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Assumptions

» These methods require the assumption that H is a sufficient confounder for
estimating the effect of T on Y/ that is,

{Y(®)}eer L TIH, 1)

where T is the set of possible values for T, as determined using the Backdoor
Theorem explained previously.

» We also require the positivity assumption that

1>P(T=tH)>0

for all possible values t of T.

» Finally, we require the consistency assumption.
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Standardization via O

> Standardization via outcome modeling gives us a way to estimate E(Y(t))
assuming (1), positivity, and consistency. We can write

E(Y(t)) = ERE(Y(t)|H) =
EHE(Y(t)|T = t,H) = E4E(Y|T = t, H), (2)

where the first equality follows from the double expectation theorem, the second
follows from assumption (1), which implies mean independence of Y(t) and T
given H, and the third follows from the consistency assumption, which allows us
to replace Y(t) with Y when we condition on T = t.

> E(Y|T = t,H) is known as the outcome model.
»> Note that

EHE(Y|T =t,H) # Eqjr=E(YIT = t, H) = E(Y|T = 1),

where Ey7—.E(Y|T = t) = E(Y|T = t) by the double expectation theorem.
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Standardization via O

> Mistakenly equating EHE(Y|T = t|H) with Ey7—,E(Y|T = t, H) would imply
that E(Y(t)) = E(Y|T = t), which would only be true if Y(t)II T.

» However, we have assumed confounding by H; that is, Y(t) II T|H.
> Equation (2) is the basis for the outcome-modeling approach to standardization.

> If H is continuous or high-dimensional, we cannot express E(Y|T = t, H)
nonparametrically, but rather must use a parametric outcome model.

» With a binary dataset, we can write

EHE(Y|T =t,H) = E(Y|T = t,H = 0)P(H = 0) +
E(Y|T =t,H=1)P(H = 1).

We can thus estimate E(Y'(t)) using nonparametric estimates of the
components on the right-hand side of the equation.
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Standardization via O

» We consider some examples. For the mortality data, recalling that T =1
indicates the US and H = 1 indicates the 65+ age group, we have that

E(Y|T =0,H = 0) = 0.002254
E(Y|T =0,H=1) = 0.05652

E(Y|T =1,H = 0) = 0.002679

E(Y|T =1,H =1) = 0.04460 (3)

and

T 282,305,227+1,297,258,493 _
P(H=0) = 282,305,227+1,207,258,493+48,262,055+133,015,479 0.897

P(H=1)=1-P(H=0)=1-0.897 = 0.103

» Therefore,

E(Y(0)) = 0.002254 * 0.897 + 0.05652 * 0.103 = 0.0078434
E(Y(1)) = 0.002679 * 0.897 + 0.04460 * 0.103 = 0.0069969
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Standardization via Outcome Modeling

» Thus we see that when we combine the age-specific mortality rates of China
with the age distribution of the two countries combined, we compute an overall
mortality rate of around 7.8 per 1000, whereas when we do the same for the US,
we compute about 7.0 per thousand.

» The standardized risk difference is thus —0.8 per 1000, and the standardized
relative risk is 0.897.

» This is a reversal from the unadjusted comparison of the two countries, which
was in the opposite direction, at 8.8 per 1000 versus 7.3 per 1000, with a risk
difference of 1.2 per 1000 and a relative risk of 1.206.

» Due to the large sample sizes per country, the reversal is highly statistically
significant.
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Standardization via Outcome Modeling

» Next, we use R to compute standardized estimates for the What-If? study. We

assumed that
{Y(0), Y(1)} LLAIH.

» We can use the nonparametric linear model
E(Y|AH) = p1+ oA+ BsH + BsAx H

to estimate
E(Y(0)) = E4E(Y|A=0,H) = B + B3E(H)

and
E(Y(1)) = EHE(Y|A=1,H) = 1 + B2 + B3E(H) + BaE(H).
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Standardization via Outcome Modeling

Table 1: Standardized Estimates for the What-If? Study

Measure  Estimate  95% Cl

E(Y(0)) 0.375 (0.263, 0.487)
E(y(1)) 0.289 (0.206, 0.372)
RD -0.086 (-0.212, 0.039)
RR 0.770 (0.528, 1.12)

8/92



Standardization via O

» For our final example, we analyze data from the Double What-If? Study. Using
the causal DAG and the R code for doublewhatifsim.r that was used to
simulate the data, we can find that

{VL1(0), VL1 (1)} 11 A|AD,,

but that
{VL1(0), VL1(1)}HA| VL.

We can also find that

E(VL1(0)) = 0.655
E(VL1(1)) = 0.295

> For estimation, we can reuse the R code used for the What-If? Study, labeling
Y = VL; and H = ADy.
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Standardization via Qutcome

Table 2: Standardized Estimates for the Double What-If? Study with
H = ADqy

Measure Estimate  95% ClI
E(VL1(0)) 0.669 (0.636, 0.702)
E(vLi(1)) 0335 (0.272, 0.397)
RD -0.334 (-0.403, -0.265)
RR 0.500 (0.413, 0.606)

> We observe that the confidence interval for E(VL1(0)), which is (0.636, 0.702),
includes the true value 0.655; the confidence interval for E(VLi(1)), which is
(0.272,0.397), includes the true value 0.295.
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Standardization via Outcome Modeling

» As expected, the method appears to work. However, without knowledge of the
foregoing proof that the method does indeed work, we might wonder if we were
just lucky with this particular sample, which we obtained with set.seed(444).

» More empirical evidence that the method works can be obtained by repeatedly
running doublewhatifsim.r without the set.seed(444) command in order to
generate 1000 confidence intervals; we can then ascertain whether the
percentage of confidence intervals covering the true values is 95%.

»> We implemented this to obtain more evidence that the method is valid.

» However, one simulation study is not a general proof. Fortunately, we have
already proved that the method works.
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Standardization via Outcome Modeling

» For comparison, we repeat the standardization with H = VL.

Table 3: Standardized Estimates for the Double What-If? Study with
H= VL,

Measure Estimate 95% Cl
E(VL1(0)) 0.696 (0.662, 0.729)
E(VLi(1)) 0.245 (0.192, 0.299)
RD -0.450 (-0.512, -0.388)
RR 0.353 (0.283, 0.441)
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Standardization via Outcome Modeling

> As VLl is not a sufficient confounder, we do not expect these results to be
correct.

> Indeed, the confidence interval for E(VL1(0)), which is (0.662,0.729), does not
include the true E(VL;1(0)), which is 0.655.

> However, the confidence interval for E(VL;(1)), (0.272,0.397), does include the
true E(VL1(1)), which is 0.295.

» Therefore, the results are biased, but not terribly so.

» Furthermore, due to sampling variability, it is possible that the method is valid
but that our confidence interval belongs to the 5% of the 95% confidence
intervals that do not contain the true value.

» We conducted a simulation study and found that the percentage of confidence
intervals for E(VL1(0)) covering 0.655 is 63.3%, while the percentage of
confidence intervals for E(VL;i(1)) covering 0.295 is 13.7%.

> Because these percentages are so far away from 95%, the simulation study
indicates substantial bias.

> It is important to keep in mind that this is only one simulation study, and that
other simulation studies with different data generating mechanisms might reveal
more or less bias.

» However, just one simulation study demonstrating bias is enough to prove that
standardization with an insufficient confounder, such as VL, is not generally
valid.
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Average Effect of

» Previously, we introduced a special kind of conditional causal effect, called the
average effect of treatment on the treated (ATT), i.e. E(Y(1)|A = 1) versus
E(Y(0)|JA=1).

»> We can estimate E(Y(1)|A = 1) easily, because it equals E(Y|A =1) by
consistency.

» We can use an outcome-modeling approach to standardization to estimate
E(Y(0)|A = 1), assuming (1), with A in place of T, and consistency:

E(Y(0)|A=1) = EyatE(Y(0O)|A=1,H) =
Enact E(Y(0)|A = 0, H) = Eyat E(Y|A = 0, H), @

where the first equality follows from the double expectation theorem, the second
from (1), and the third from consistency.

» For binary H, we can estimate the outcome model non-parametrically, as before,
but for continuous or high-dimensional H, we can enlist a parametric model for

E(Y|A=0,H).
> We can use a similar argument to estimate E(Y(1)|A = 0); this is left as an
exercise.
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Average Effect of

> For the mortality data, letting A = T, the ATT compares mortality in the US
versus China using the age distribution in the US.

> Recalling that P(H = 1|A = 1) = 0.146, so that P(H = 0]A = 1) = 0.854, and
using the mortality rates at (3), we compute E(Y(0)|]A = 1) from (4) as

E(Y|A=0,H=0)P(H=0]A=1)+
E(YJA=0,H=1)P(H=1|A=1) =
0.002254  0.854 + 0.05652  0.146 = 0.0102.

» Thus, had the age distribution been the same as in the US, the mortality rate in
China would have been 10.2 per thousand instead of 7.3 per thousand.

> We can compute E(Y(1)|A = 1) directly from the US data as
E(Y|A=1)=0.0088, or 8.8 per thousand.

» The ATT is thus 8.8 per thousand versus 10.2 per thousand.

» For the What-If? study, we use R to estimate the ATT, with a slight
modification to our previous code.
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Average Effect

Table 4: ATT for the What-If? Study

Measure Estimate 95% CI
E(Y(0)JA=1) 0.361 (0.247, 0.476)
E(y(1)]A=1) 0.276 (0.192, 0.360)
RD -0.085 (-0.207, 0.037)
RR 0.765 (0.520, 1.12)

» In this example, we find that the results reported in Table 4 are very similar to
the overall average effect of treatment, E(Y(1)) — E(Y(0)), computed
previously, although the results for both are variable due to the relatively small

sample size.
» This suggests that any effect modifiers are balanced across the two treatment

groups.
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Average Effect of

» For comparison with difference-in-differences estimation presented next, we
estimate the ATT for the Double What-If? Study, first with H = ADy and
second with H = Vl,.

» The analysis with H = ADy is correct, whereas the one with H = VL is not.

> Computing the true values of E(VL;1(1)|A=1), E(VL1(0)|]A = 1), and the ATT
using the true data generating mechanisms in doublewhatifsim.r is difficult
but not impossible.

» We can derive that
E(VL1(0)|]A =1) = 0.559.

and that
E(VL1(1)|JA=1)=0.199.

»> Thus, we have E(VL;(0)|]A =1) =0.559, E(VL1(1)|A = 1) = 0.199, the true
RD equal to E(VL1(1)|A=1) — E(VL1(0)]JA=1) = —0.36, and the true RR
equal to E(VL1(1)|A = 1)/E(VL1(0)|A = 1) = 0.356.
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Average Effect of Treatment on the Treated

Table 5: Standardized ATT Estimates for the Double What-If? Study

with H = ADq
Measure Estimate  95% ClI
E(VL1(0)JA=1) 0574 (0.526, 0.622)
E(vLi(1)|JA=1) 0231 (0.179, 0.283)
RD -0.344 (-0.404, -0.283)
RR 0.402 (0.322, 0.501)
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Average Effect of

> We observe that the confidence interval for E(VL1(0)|A = 1), which is (0.526,
0.622), includes the true value 0.559, and the one for E(VLi(1)|A = 1), which
is (0.179, 0.283), includes the true value 0.199.

» The true RD, -0.36, is in its respective confidence interval (-0.404,-0.283), and
the true RR, 0.356, also falls in its respective confidence interval (0.322, 0.501).

» As expected, the method appears to work.

» We conducted a simulation study to find that the confidence intervals cover
E(Y(0)]JA=1) 93.7% of the time, E(Y(0)|A = 1) 94.7% of the time, the true
RD 95.3% of the time, and the true RR 96% of the time.

» This supports the validity of the method.
» The next slide presents results for H = VL.
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Average Effect of

Table 6: Standardized ATT Estimates for the Double What-If? Study
with H = VLg

Measure Estimate  95% ClI
E(VL1(0)JA=1) 0.682 (0.647, 0.718)
E(vL;(1)]JA=1) 0231 (0.177, 0.284)
RD -0.452 (-0.514, -0.389)
RR 0.338 (0.267, 0.428)

> As VLlg is not a sufficient confounder, we do not expect these results to be
correct.

» Indeed, the only confidence intervals that include the true values are for
E(VL1(1)|A =1) and RR. For the other two measures, the results are biased,
but not terribly so. We should not expect the confidence interval for
E(VL1(1)|A =1) and the RR to cover the true value in general.

» Once again, we conducted a simulation study and found that the confidence
intervals cover E(VL1(0)|A = 1) 0% of the time, E(VL1(1)|A = 1) 96.0% of the
time, the true RD 7.7% of the time, and the true RR 75.5% of the time.
Therefore, for the data generating model of doublewhatifsim.r, use of Vig
rather than ADy as a sufficient confounder is invalid for three of the four
measures.

20/92



Standardization with a Parametric Outcome Model

» When H necessitates a parametric outcome model, validity of the
standardization depends upon correct model specification. In practice, our

model will never be exactly right, but hopefully it is close enough that our
results are not too far off.

> We present two examples.

» First, we analyze the What-If? data in whatif2dat, which includes some
continuous covariates.
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Standardization with a Parametric Outcome Model

> head(whatif2dat)

v10 vlcontO artad0 vl4 vlcont4 artad4 auditO T A lvlcontO lvlcont4d
1 0 20 1 1 420 1 101 2.9957 6.0403
2 0 20 0 0 20 1 111 2.9957 2.9957
3 1 61420 1 0 20 1 110 11.0255 2.9957
4 1 600 0 O 20 1 111 6.3969 2.9957
5 1 75510 0 1 184420 0 101 11.2320 12.1250
6 0 20 1 0 30 0 110 2.9957 3.4012
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Standardization with a Parametric Outco

» The variable 1vlcontO represents log of viral load (copies/ml) at baseline, a
continuous variable that we will use as H in the analysis of the effect of reduced
drinking A on unsuppressed viral load at four months v14.

» The following R code computes the estimates that follow.
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Standardization with a Parametric Outcom

> bootstand.r

function ()

{

stand.out<-boot (data=whatif2dat,statistic=standout.r,R=1000)
stand.est<-summary(stand.out)$original
stand.SE<-summary (stand.out) $bootSE
stand.lci<-stand.est-1.96%stand.SE
stand.uci<-stand.est+1.96%stand.SE
list(stand.est=stand.est,stand.SE=stand.SE,stand.lci=stand.lci,
stand.uci=stand.uci)

s

> standout.r
function(data=whatif2dat,ids=c(1:nrow(whatif2dat)))
{

dat<-datal[ids,]
1mod<-glm(v14~A+lvlcontO,family=binomial,data=dat)
datO<-dati<-dat

dat0$A<-0

dat1$A<-1

EYhatO<-predict (1mod,newdata=dat0,type="response")
EYhati<-predict (1lmod,newdata=dat1,type="response")
EYO<-mean(EYhat0)

EYi<-mean(EYhat1)

rd<-EY1-EYO

logrr<-log(EY1/EYO0)

c(EY0,EY1,rd,logrr)

s
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Standardization with a Parametric Outcom

Table 7: Outcome-model Standardization for the What-If? Study with

H = 1vlcontO
Measure  Estimate 95% Cl
E(v(0)) 0.360 (0.249, 0.472)
E(y(1)) 0.300 (0.216, 0.384)
RD -0.061 (-0.188, 0.067)
RR 0.831 (0.564, 1.23)

» We observe that the results of Table 1 based on the nonparametric outcome
model with H equal to unsuppressed viral load at baseline are quite similar to
those of Table 7 based on the parametric outcome model with H equal to the
log of viral load at baseline.
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Standardization via Exposure Modeling

> Standardization via exposure modeling gives us a second way to estimate
E(Y(t)) assuming (1), positivity, and consistency.

» We present the method for binary T. To estimate E(Y/(t)) for non-binary T,
one can first recode the data so that T = 1 when it previously equaled t, and
T = 0 when it previously equaled any value other than t.

» Then one can use the method for estimating E(Y(1)) with the recoded data.

» The exposure model is E(T|H) = P(T = 1|H), so named because sometimes T
indicates a potentially harmful exposure, rather than a treatment.

» The exposure model is also known as the propensity score, denoted by e(H), as
it is a function of H. It is called the propensity score because it measures the
propensity for treatment given observed levels of the confounders H.

» The most common parametric model for it is the logistic model
E(T|H) = expit(og + Hia1 + - - - + Hgoyg), (5)

where g is the number of components of H.
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Standardization via Exposure Modeling

» One can prove the following relations, which then can be used to estimate
E(Y(0)) and E(Y(1)).

E(Y(1)=E (e(;)) (6)
and
evon - £ (=5 ) (7)
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Standardization via Exposure Modeling

» The proof of (6) for discrete Y and H follows. The proof is analogous for (7),
noting that P(T =0|H) =1— P(T =1|H) =1 — e(H).
>

TY _ _
E(05) =ZyenatgP(Y =y, T=t.H=h)
= Z},’t’ht—},’]P(Y =y|T =t,H=h)P(T =t|H=h)P(H = h)
—Zyth P(Y y|T =1,H = h)e(h)P(H = h)
=X, h e(h)P(Y y|T =1,H = h)e(h)P(H = h)
=X, ,yP(Y=y|T=1,H=h)P(H = h)
= Eq(E(Y|T =1,H)) = E(Y(1))
P> The first equality follows from the definition of expectation, the second from the
multiplication rule, the third by the definition of e(H), the fourth because when

t = 0 the summand is zero, the fifth by cancellation of e(h) from numerator and
denominator, the sixth and seventh by (2).

»> When Y and/or H are continuous, the proof is analogous using integrals and
probability density functions in place of sums and probability mass functions.
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Standardization via Exposure Modeling

> For better understanding, we will estimate E(Y'(1)) and E(Y(0)) using the
mortality data and empirical versions of (6) and (7), and compare with the
outcome-modeling standardization results.
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Standardization via Exposure Modeling

> mk.mortdat

function(){

mortdat<-NULL

mortdat$H<-c(0,0,0,0,1,1,1,1)
mortdat$T<-c(0,0,1,1,0,0,1,1)
mortdat$y¥Y<-c(0,1,0,1,0,1,0,1)
mortdat$n<-c((1297258493-2923480) ,2923480,
(282305227-756340) , 756340, (133015479-7517520) ,7517520, (48262955-2152660) ,
2152660)

mortdat$p<-mortdat$n/sum(mortdat$n)
eHO<-sum(mortdat$n[3:4])/sum(mortdat$n(1:4])
eH1<-sum(mortdat$n[7:8])/sum(mortdat$n[5:8])
mortdat$eH<-eHO* (1-mortdat$H)+ eHl*mortdat$H
mortdat$si<-mortdat$T*mortdat$Y/mortdat$eH
mortdat$s0<-(1-mortdat$T) *mortdat$Y/(1-mortdat$eH)
EY1<-sum(mortdat$si*mortdat$p)
EYO<-sum(mortdat$sO*mortdat$p)

mortdat<-data.frame (mortdat)
1list(EY1=EY1,EYO=EYO,mortdat=mortdat)

s
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Standardization via Exposure Modeling

> mortdat.out<-mk.mortdat ()
> mortdat.out

$EY1
[1] 0.0069952
$EYO
[1] 0.0078399
$mortdat

HTY n P eH s1 s0
1 0 0 0 1294335013 0.73506589 0.17872 0.0000 0.0000
2001 2923480 0.00166027 0.17872 0.0000 1.2176
3010 281548887 0.15989445 0.17872 0.0000 0.0000
4011 756340 0.00042953 0.17872 5.5952 0.0000
510 0 125497959 0.07127156 0.26624 0.0000 0.0000
6101 7517520 0.00426928 0.26624 0.0000 1.3628
7110 46110295 0.02618650 0.26624 0.0000 0.0000
8111 2152660 0.00122252 0.26624 3.7561 0.0000
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Standardization via Exposure Modeling

» |n the function mk.mortdat, which makes the mortdat dataset and calculates
the estimated potential outcomes, eH is e(H), s1is TY /e(H), and s0 is
(1-T)Y/(1—e(H)).

> To compute the estimated potential outcomes, we need to sum the s1 or sO
summands weighted by the probability of the row, p.

> We see that £(Y(1)) = 0.0069952 and E(Y(0)) = 0.0078399, which would be
identical to the estimates obtained earlier using the outcome-modeling
approach, except for propagation of round-off error.
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Average Effect of Treatment on the Treated

» We can also use the exposure-modeling approach to estimate the ATT. We
introduce eg = P(T = 1), to go along with e(H) = P(T = 1|H).

> We showed in equation (4), letting T = A, that

E(Y(0)|T = 1) = Er_a E(Y|T = 0, H). (®)
»> One can prove that E(Y/(0)|T = 1) is also a function of the exposure model.
Specifically,
Y(1- T)e(H))
E(Y(0)|]T=1)=E (* . 9
OIT=1=£ (i ©)
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Average Effect of Treatment on the Treated

> We compute E(Y(0)|T = 1) as follows

> attsem.r
function(mortdat=mortdat.out$mortdat)

e0<-sum(mortdat$T*mortdat$p)
s<-mortdat$Y*(1-mortdat$T) *mortdat$eH/ (e0* (1-mortdat$eH))
EYOT1<-sum(s*mortdat$p)

EYOT1

}

> attsem.r()

[1] 0.010176

> We find that E(Y(0)|T = 1) = 0.0102, or 10.2 per thousand, identical to the

estimate computed using the outcome-modeling approach. E(Y(1)|T = 1) can
be estimated via E(Y|T = 1), as before, at 8.8 per thousand.
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Standardization with a Parametric Exposure Model

> For parametric exposure models such as (5), equation (6) allows us to estimate
E(Y(1)) by first estimating « with & using an estimating equation for logistic
models, second computing &(H) with &, and third computing

E(y(1)) = %z% (10)

>

> Similarly, we can estimate E(Y(0)) as

1-THY:

E(Y(O)) = %Zim-

(11)
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Standardization with a Parametric Exposure Model

> Another good estimator of E(Y(1)) is given by

TiY;
z'é(Hi
T
i 5(H;

E(v(1) =

P This takes the form of a random weighted average,

E(Y(1)) = Z;W;Y;, where
T;
w; = ) (12)

i)

where W; € [0,1] and X;W; = 1.
> Note that (1/n)X;Y; is a weighted average with W; = 1/n. Similarly,

PNERG

PNER

is a weighted average for any nonnegative a;.
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Standardization with a Parametric Exposure Model

» We also have that

E(Y(0)) = Z;W;Y;, where
1-7;
Wi= St (13)

STz

> The estimators of (12) and (13) are useful for estimation using the
weighted.mean function or the glm or geeglm functions with the weights
options.

» Note that the denominators of the weights are constant for a given sample, and
our use of the three R functions is invariant to multiplication of the weights by
such a constant. Therefore, in our data examples, we use only the numerators
for the weights.
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Standardization with a Parametric Exposure Model

» First, we apply exposure-model standardization to the What-If? Study with
H = 1vlcontO, for comparison with the outcome-modeling results reported in
Table 7.

» We use the standexp.r function shown below, noting that the use of the
weights option in the glm function produces the correct estimator of beta, but
that the standard errors are incorrect for our usage.

» Therefore, we turn to the bootstrap, which is also convenient for computing
confidence intervals for functions of the parameters, including the relative risk.

» Our bootstand.r function is the same except for the modification to
statistic=standexp.r.

38/92



Standardization with a Parametric Exposure Model

> standexp.r
function(data,ids)

dat<-datalids,]
e<-fitted(glm(A~1lvlcontO,family=binomial,data=dat))
dat$W<-(1/e)*dat$A + (1/(1-e))*(1-dat$A)
beta<-glm(vl4~A,data=dat,weights=W)$coef
EYO<-beta[1]

EYi<-beta[1]+beta[2]

rd<-EY1-EYO

rr<-log(EY1/EY0)

c(EY0,EY1,rd,rr)

s
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Standardization with a Parametric Exposure Model

Table 8: Exposure-model Standardization for the What-If? Study with

H = 1vlcontO
Measure  Estimate 95% ClI
E(v(0)) 0.360 (0.249, 0.471)
E(y(1)) 0.300 (0.220, 0.380)
RD -0.060 (-0.188, 0.069)
RR 0.834 (0.565, 1.23)
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Standardization with a Parametric Exposure Model

» If interest is focused primarily on the risk difference, one could alternatively
program its estimator and standard error using exp.r.

> exp.r
function(dat=whatif2dat)

library(geepack)
e<-fitted(glm(A~1lvlcontO,family=binomial,data=dat))
dat$W<-(1/e)*dat$A + (1/(1-e))*(1-dat$A)
dat$ids<-c(1:nrow(dat))

summary (geeglm(v14~A,data=dat,id=ids,weights=W))

> exp.r()
Call:
geeglm(formula = v14 ~ A, data = dat, weights = W, id = ids)

Coefficients:

Estimate Std.err Wald Pr(>|Wl)
(Intercept) 0.3600 0.0613 34.47 4.3e-09
A -0.0598 0.0767 0.61 0.44
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Standardization with a Parametric Exposure Model

> We see that the coefficient of A, -0.0598, is identical to our estimate of the RD
in Table 8.

» It has been shown that for large samples, the standard error, 0.0767, of the RD
estimated with exp.r is necessarily larger than our bootstrap estimate of the
standard error estimated with bootstand.r and standexp.r.

P> As the latter standard error is 0.0655, the rule holds for this example.

» Because the standard error estimated with exp.r is too large, if one were to find
statistical signficance, typically P < 0.05, then one would not need to do any
further analyses, because the bootstrap P-value would be even smaller.

» However, if P > 0.05, as it does in this example with P = 0.44, one would
typically wish to check statistical signficance with the bootstrap.

» Our bootstrap confidence interval includes 0, which means that for this
example, both methods produce statistically insignificant results.
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Doubly Robust Standardization

» Validity of standardization with a parametric outcome or exposure model
requires correctness of the chosen model.

P> The two methods can yield quite different results.

» Doubly robust standardization avoids this problem by using an estimator that
relies on both models and that is valid if at least one of the models is correct.

»> The method is based on the following relations, that are true assuming (1),
consistency, positivity, and that either the exposure model e(H) or the outcome
model E(Y|H, T) is correctly specified.

TY T —e(H)

E(Y(1)):E<@—WE(Y\H,T:1)), (14)

and
(1-T)Y T-—e(H)

1—e(H) 1—e(H)

E(Y(0)) = E ( E(Y|H, T = o)) . (15)
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Doubly Robust Standardization

» The proof of (14) follows. First, we assume that e(H) is correct. In that case,

TY

E (W) — E(Y(1),

as proved for (6).
» Furthermore,

T —e(H) _ - T — e(H) _
E (WE(Y\H, T = 1)\H) =E <7e(H) |H> E(Y|H, T =1), (16)

because E(Y|H, T = 1) is constant conditional on H.

» Then - H
E (;()“./) =0,
e(H)
because expectation is linear, e(H) is constant conditional on H, and
E(T|H) = e(H).
» By the double expectation theorem,
T —e(H
E (ﬁE(Y\H, T-— 1)) —o.
e(H)

Thus, we have proved (14).
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Doubly Robust Standardization

> Second, we assume that E(Y|H, T = 1) is correct. We can rearrange the right
hand side of (14) as
T

E(Y|H,T=1)+ =)

(Y — E(Y|H, T =1)).

» The expectation of the first term is
EW(E(Y[H, T =1) = E(Y(1)),

as proved for (2).

> We first take the conditional expectation of the second term given H and
T =1, to find that it equals zero:

E (TZ)(Y— E(YIH,T=1)H,T=1) =

am (E(YIH, T =1) -~ E(Y|H, T =1)) =0.

» Hence, the unconditional expectation of the second term also equals zero, by
the double expectation theorem. Thus, we have proved (14). The proof of (15)
is analogous.
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Doubly Robust Standardization

» Using (14) and (15), we can estimate E(Y(1)) and E(Y(0)) with

T, Ti-&H)
&(H) é(H)

E(v(1) = (1/n) {z,- ( E(Yi|H;, T; = 1)) } (17)

and an analogous expression for E(Y(0)).
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Doubly Robust Standardization

>

>

>

To illustrate, we apply the method to the What-If? Study data assuming
1lvlcontO is a sufficient confounder for the effect of A on v14.

We use a misspecified outcome model including only A and the intercept, and
we use an exposure model including the intercept and 1vlcontO.

The results of standardization using only the exposure model were shown
previously in Table 8, and the results of standardization using only the
misspecified outcome model are shown below in Table 9.
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Doubly Robust Standardization

Table 9: Outcome-model Standardization for the What-If? Study with
the Misspecified Outcome Model

Measure  Estimate 95% CI

E(v(0)) 0.400 (0.277, 0.523)
E(v(1)) o0.276 (0.190, 0.362)
RD -0.124 (-0.273, 0.025)
RR 0.690 (0.442, 1.07)

» Focusing on the risk difference, the estimate and 95% confidence interval are
-0.060 (-0.188,0.069) using the exposure model as compared to -0.124 (-0.273,
0.025) using the misspecified outcome model.

» Although neither method leads to statistical significance, because both
confidence intervals include zero, the estimate using the misspecified outcome
model suggests a larger effect that is close to statistical significance.
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Doubly Robust Standardization

> badstanddr.r

function(data,ids)

{

dat<-datal[ids,]
e<-fitted(glm(A~1lvlcontO,family=binomial,data=dat))
1mod<-glm(v1l4~A,family=binomial,data=dat)
datO<-dati<-dat

dat0$A<-0

dat1$A<-1

EYhatO<-predict (lmod,newdata=dat0,type="response")
EYhat1<-predict (lmod,newdata=dat1,type="response")
EYO<-mean(dat$v14*(1-dat$A)/(1-e) + EYhatOx(e-dat$A)/(1-e))
EYi<-mean(dat$vl4*(dat$A/e) - EYhatik(dat$A-e)/e)
rd<-EY1-EYO

rr<-log(EY1/EY0)

c(EY0,EY1,rd,rr)

¥
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Doubly Robust Standardization

Table 10: Doubly Robust Standardization for the What-If? Study
Combining the Misspecified Outcome Model of Table 9 and the Exposure
Model of Table 8

Measure  Estimate 95% CI

E(v(0)) 0362 (0.253, 0.471)
E(y(1)) 0.300 (0.216, 0.385)
RD -0.062 (-0.183, 0.060)
RR 0.830 (0.571, 1.20)

» The estimate and 95% confidence interval for the risk difference are -0.062
(-0.183, 0.060), quite close to those of the exposure-modeling approach, which
are themselves almost identical to those estimated with the outcome model
using both A and 1vlcontO, previously presented in Table 7.

»  This should come as no surprise, as we saw previously that the conditional
expectation of the outcome given A and 1vlcontO depends on lvlcontO.
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Difference-in-Differences Estimation: Introduction

» On March 11, 2020, the World Health Organization (WHO) declared COVID-19
a pandemic. The public health crisis affected countries across the globe, with
several, including the US, shutting down large segments of their economies in
order to stem the spread of the coronavirus.

> In the US, estimated monthly employment rates for men and women from
January to August 2020 are reported on the next slide.

» These estimates were produced by the US Bureau of Labor Statistics using data
from the Current Population Survey, which is a monthly survey of households
conducted by the Bureau of Census.

» The estimates are seasonally adjusted, meaning that increases or decreases from
month to month are due to factors other than seasonal variation for a typical
year.

» These data document, in a very obvious way, that shutting down the economy
subsequent to the pandemic declaration triggered a large rise in unemployment.

> We see a relatively small rise from February to March, followed by a large rise in
April and beyond.

» In this example, no one would question that the increase was caused by the
nation’s response to the pandemic.

» In the face of cause and effect this obvious, sophisticated statistical methods are
not really needed. Simple subtraction, i.e. 16.2% - 4.4% = 11.8% for women or
13.5% - 4.4% = 9.1% for men, is enough.
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Introduction

Table 11: US Monthly Percent Unemployment from January to August
2020 of the Civilian Noninstitutional Population 16 Years and Over,
Estimated by the Bureau of Labor Statistics Using Current Population

Survey Data

Month Percent of Men  Percent of Women
January 3.6 35

February 3.6 3.4

March 4.4 4.4

April 13.5 16.2

May 12.2 14.5

June 10.6 11.7

July 9.8 10.6

August 8.3 8.6
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Introduction

» In this example, we were able to rule out seasonal variation as a major
confounder for two reasons.

> First, the estimates were reported as seasonally adjusted, meaning that this
confounder has already been removed, perhaps via standardization.

» Second, the magnitude of the differences is too great to be due to seasonal
fluctuations alone.

» For many other investigations involving pre- versus post-exposure differences,
cause and effect is not as obvious.
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Introduction

> For example, Molyneux et al. (2019) estimated the effect of negative interest
rate policy (NIRP) on bank margins and profits.

> Responding to the global financial crisis of 2007-2008, the central banks of
many countries implemented NIRP in order to provide economic stimulus to
weak economies.

» Former President Trump repeatedly tweeted about the benefits of negative
interest rates. For example, on September 3, 2019, @realDonaldTrump tweeted
“Germany, and so many other countries, have negative interest rates, ‘they get
paid for loaning money,” and our Federal Reserve fails to act! Remember, these
are also our weak currency competitors!”

» Many economists are not as sanguine.

> Molyneux et al. (2019) analyzed a dataset comprising 7,359 banks from 33
OECD member countries over 2012-2016 to assess the impact of NIRP on net
interest margins (NIMs).
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ion

NIM measures the net amount a bank earns on loans and other interest-earning
assets relative to the amount of those loans and other assets.

For example, supposing the bank’s interest earning assets equal one million
dollars in a year, the bank earned $50,000 in interest at 5% and paid $20,000 in
expenses to their lenders, then the NIM would be
($50,000-$20,000)/$1,000,000=3%.

Table 2 of Molyneux et al. (2019) reports on yearly NIMs of banks in countries
initiating NIRP both pre-NIRP and post-NIRP.

There are 8916 bank-years (one bank-year represents one NIM from one bank
from one year) pre-NIRP with an average NIM of 2.06% and a standard
deviation of 0.95% (hence a standard error of 0.95/1/8916 = 0.0100%) and
8040 bank-years post-NIRP with an average NIM of 1.92% and a standard
deviation of 0.78% (hence a standard error of 0.78/1/8040 = 0.0087%).
Ignoring the temporal correlation between NIMs of a single bank from year to
year, we can assess whether the difference in average NIMs, that is
1.92%-2.06% = -0.14%, is statistically significant using a z-test, computing

—0.14
z= = —10.562,
1/0.01002 + 0.00872

which indicates that the difference is highly statistically significant.

However, it may be due to factors other than initiation of NIRP. Perhaps
temporal changes in other variables led to the difference over time.
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The difference-in-differences solution incorporates a control group, resulting in
one of the most popular tools for applied research in economics to evaluate the
effects of public interventions and other treatments of interest on relevant
outcome variables.

We compare the change over time in the exposed group to the change over time
in the unexposed group.

Molyneux et al. (2019) also present statistics on banks in countries that did not
initiate NIRP, over a matched time period.

There are 4686 control bank-years pre-NIRP with an average NIM of 2.92% and
a standard deviation of 1.71% (hence a standard error of

1.71/4/4686 = 0.0250%) and 4331 control bank-years post-NIRP with an
average NIM of 2.93% and a standard deviation of 1.65% (hence a standard
error of 1.65/1/4331 = 0.0251%).

We use the following R code to determine whether the difference in differences,
that is, (1.92 — 2.06) — (2.93 — 2.92) = —0.15%, is statistically significant.
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Introduction

> analyze.r

function ()

{

did<-(2.06-1.92)-(2.92-2.93)

se<-sqrt((.95°2)/8916 + (.7872)/8040 + (1.71°2)/4686 + (1.6572)/4331)
list(did=did,se=se,z=did/se)

}

> analyze.r()
$did

[1] 0.15

$se

[1] 0.037809

$z

[1] 3.9673
>2*pnorm(-3.9673)
[1] 7.2691e-05
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Introduction

» The z-statistic is 3.97, corresponding to a P-value less than 0.0001, indicating
that the difference in differences is indeed statistically significant, which
suggests that initiation of NIRP negatively affects banks.

» Next, we provide the foundation for this approach to adjusting for confounding.

> We note that Molyneux et al. (2019) also applied a more complicated
difference-in-differences approach that accounted for the temporal correlation of
NIMs from a single bank and also adjusted for other factors, but their results
were qualitatively the same as ours.
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nce-in-Differences (DiD) Estimators

> Let Y:, t = 0,1, denote the pre- and post-exposure measures.
» Let A indicate the exposure.

> Let Y1(0) and Yi(1) denote the potential post-exposure outcomes to A = 0 and
A =1, respectively.
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DiD Estimator with a Linear Model

» The method relies on consistency as well as assumption Al:
AL E(Yi(0)|A=1) — E(V1(0)|A = 0) = E(Yo|A=1) — E(Yo|A=0), (18)

also called additive equi-confounding.

» The target of estimation is the linear ATT, presented previously as a risk
difference, but also valid for non-binary Y;:

Linear ATT: E(Y1(1) — Y1(0)|A =1). (19)
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DiD Estimator with a Linear Model

» The DiD estimator derives from the relation

E(v1(1) = v1(0)JA=1) = E(V1]A=1) — E(Y1|]A=0) —
(E(YolA =1) — E(Yo|A =0)), (20)

which connects the estimand framed in terms of potential outcomes to an
estimand relying only on observed data.

» To prove the relation, note that
E(Y1]A=1)— E(Y1]A=0) = E(Y1(1)|]A=1) — E(Y1(0)|A = 0),
by consistency, and furthermore that
E(YolA = 1) — E(Yo|A = 0) = E(Y1(0)|A = 1) — E(Y1(0)|A = 0),

by assumption Al.

» Taking the difference of these two differences proves the relation.
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DiD Estimator with a Linear Model

> We can therefore estimate the linear ATT at (19) via the difference in
differences of averages,

E(ri]A=1) - E(Y1]A =0) — (E(YolA =1) — E(Yo|A =0)),

which equals . .
E(Y1 — Yol[A=1)— E(Y1 — Yo|A=0). (21)

» This is the estimator we used for the NIRP example.
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DiD Estimator with a Linear Model

» We can also compute the DiD estimator via the linear model
E(Yt\A):a0+a1t+a2A+BA*t, (22)
where

B=E(Y1|A=1) - E(Y1|]A=0) — (E(Yo|A= 1) — E(Yo|A =0))
= (ap+ a1+ a2+ B) — (a0 + o)
= ((c0 + @2) — ) -

» Thus [ is the linear ATT, and we can use linear regression to estimate it.

> We will see examples in R in a bit.
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DiD Estimator with a Loglinear Model

» The method relies on consistency as well as assumption A2:
A2 E(Y1(0)|A=1)/E(Y1(0)|A=0) = E(YolA = 1)/E(Yo|A=0), (23)
which one might also call multiplicative equi-confounding or additive
equi-confounding on the log scale.

P> The target of estimation is the loglinear ATT:

E(Y1(1)|A =1)/E(Y1(0)|A = 1). (24)
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DiD Estimator with a Loglinear Model

» The DiD estimator derives from the relation

log E(YA(1)|A = 1) — log E(V4(0)|A = 1) =
log E(Y1|A=1) — log E(Y1]|A = 0) — (log E(Yo|A = 1) — log E(Yo|A = 0)),

which connects the estimand framed in terms of potential outcomes to an
estimand relying only on observed data.

» The proof is similar to that for relation (20), relying on consistency and
assumption A2.
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DiD Estimator with a Loglinear Model

» We can therefore estimate the log of the loglinear ATT at (24) via the difference
in differences of log averages, analogous to (21), and then exponentiate.

> We can also compute the DiD estimator via the loglinear model
log E(Y:|A) = ao + aut + anA+ BA x t, (25)
where

B =log E(Y1|[A=1) —log E(Y1|A = 0) — (log E(Yo|A = 1) — log E(Yo|A = 0))
= (a0 + o1 + @z + ) — (a0 + 1)
— (a0 + a2) — o).

» Thus (3 is the log of the loglinear ATT, and we can use loglinear regression to
estimate it. We then exponentiate the results.
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DiD Estimator with a Logistic Model

» The method relies on consistency as well as assumption A3:

A3:  logitE(Y1(0)|A = 1) — logitE(Y1(0)|A = 0) =
logitE(Yo|A = 1) — logitE(Yo|A = 0),

which one might also call additive equi-confounding on the logit scale.
» The target of estimation is the logistic ATT:

logit E(Y1(1)|A = 1) — logitE(Y1(0)|A = 1). (26)
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DiD Estimator with a Logistic Model

» The DiD estimator derives from the relation

logitE(Y1(1)|A = 1) — logitE(Y1(0)|[A=1) =
logitE(Y1]A = 1) — logitE(Y1]|A = 0) — (logitE(Yo|A = 1) — logitE(Ys|A = 0)),

which connects the estimand framed in terms of potential outcomes to an
estimand relying only on observed data.

» The proof is similar to that for relation (20), relying on consistency and
assumption A3.
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DiD Estimator with a Logistic Model

> We can therefore estimate the logistic ATT at (26) via the difference in
differences of logit averages, analogous to (21).

» For binary Y:, exponentiating yields an odds ratio.

» We can also compute the DiD estimator via the logistic model using the
regression
logitE(Y:|A) = ag + aut + apA+ BAx t, (27)

where 3 is the logistic ATT, and we can use logistic regression to estimate it.

» Again, for binary Y}, exponentiating yields an odds ratio.
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Comparison with Standardization

» The DiD approach to adjusting for confounding relies on consistency plus one of
assumptions Al, A2, or A3, which involve the confounder Yj.

» We saw previously that we can also use standardization to estimate the linear,
loglinear, or logistic ATT.

» However, standardization relies on consistency plus the sufficient confounder
assumption.

» Interestingly, and as we will see below in the case of the Double What-If?
Study, when Yj is not a sufficient confounder, it can still happen that one of
assumptions Al, A2, or A3 is true.

P This implies that a DiD analysis may be valid even when standardization using
only Yo may not be.

» Conversely, Yo may be a sufficient confounder without A1, A2, or A3 holding.

» In that case, standardization using only Yy would be valid whereas the DiD
analyses would not be.

» It is worth noting that when one of Al, A2, or A3 holds, the other two will
typically not hold.

» Therefore, the validity of the DiD approach depends on correctly choosing which
one might plausibly hold, often an impossible task.

» However, in our analysis of the Double What-If? Study, we observe that the
confidence intervals for all three estimators include the true value for their
respective estimands.

70/92



Comparison with Standardization

» In our exposition of the three DiD approaches, we assumed Yp was a
pre-exposure version of the post-exposure Yi. More generally, we could let Yp
represent another variable, say H, that could reasonably be presumed to satisfy
one of the assumptions Al, A2, or A3, and the corresponding DiD estimator
would be plausibly valid. For example, supposing a set of baseline covariates X
predictive of the post-treatment outcome Y7, H could represent a prognostic
score modeled in an earlier era, before the treatment existed, H = E(Y1]X).

» For binary datasets, the estimand corresponding to the DiD estimator with a
linear model can be expressed as

E(M|A=1) - (E("1]A=0,Yo =1) — E(V1]A =0, Yo = 0)) E(Yo|A = 0)
—E(M|A=0,Yy =0) — (E(Yo|A=1) — E(Yo|A=0)), (28)

by substituting

E(Y1]/A=0) = E(Y1|A=0, Yo = 0)(1 — E(Yo|A = 0))
+E(Y1]A =0, Yo = 1)E(Yo|A =0)

into the relation at (20).
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Comparison with Standardization

» On the other hand, the estimand corresponding to the standardized ATT can be
expressed as

EMilA=1)— (E(V1]A=0,Yo=1) — E(Y1]A =0, Yo = 0)) E(Yo|A = 1)
—E(V1]A=0, Y = 0). (29)

> Subtracting (29) from (28) yields

(E(Y1]A=0,Yo=1)— E(Y1]A=0,Yy=0) — 1) (E(Yo|A=1) — E(Ys]A =0)).
(30)
> Therefore, the two estimands will differ unless either (a) Y1 = Yp for everyone
with A =0, or (b) Yo IT A.
> In the first case, the ATT equals E(Y1 — Yp|A = 1), and DiD estimation is
unnecessary. In the second case, the ATT equals E(Y1|A =1) — E(Y1]A = 0),
and standardization is unnecessary.
» Because the estimands will typically differ, we recommend trying both
approaches whenever possible, as it is unlikely that scientific considerations will
be able to distinguish which approach has more validity in a given context.
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Comparison with Standardization

» Next we consider an example.

» Recall that the Double What-If? Study was simulated according to
doublewhatifsim.r. The pre- and post-exposure measures are VLg and VLj,
which take the place of Yy and Y; above.

> Previously, we derived that E(VL1(0)]A = 1) = 0.559 and
E(VL1(1)|A=1)=0.199.
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Comparison with Standardization

» From the code, we can derive that
E(VL1 — VLh|A=1) — E(VL1 — VL4|A=0) = —0.36.

» Therefore, the expected value of the DiD estimator with a linear model equals
-0.36.

» From the lecture on standardizaiton, we have that that the linear ATT also
equals E(VL;(1)]A=1) — E(VL1(0)|]A = 1) = —0.36, which means that the
DiD estimator with a linear model is valid in this example.

> It is not likely that the DiD estimators with the loglinear model and the logistic
model are valid, but we present these for the sake of comparison.
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» We next present the R code we used to compute the DiD estimators, which
relied on the regression model formulations of (22), (25), and (27).

» First, we needed to transform the doublewhatifdat dataset from short form
into long form.

» Long form contains one row per person per time period, whereas short form
contains one row per person, which includes measures at both time periods.
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R Code

> mklongdwi.r
function(dat=doublewhatifdat)

longdat<-NULL
for (i in 1:nrow(dat))

VL<-dat [i,"VLO"]

A<-dat[i,"A"]

time<-0
longdat<-rbind(longdat,c(VL,A,time))
VL<-dat[i,"VL1"]

A<-dat[i,"A"]

time<-1
longdat<-rbind(longdat,c(VL,A,time))
s

dimnames (longdat) [[2]]<-c("VL","A","time")
data.frame(longdat)

}

> longdwidat<-mklongdwi.r ()

> head(longdwidat)

VL A time
110
2 10 1
3 10 0
4 10 1
5 10 0
6 10 1
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Next we compute S for each of the models using did.r, and we estimate
confidence intervals using bootdid.r.

We need to bootstrap doublewhatifdat rather than longdwidat so that we
take a bootstrap sample of the participants rather than of the time points.

For that reason, we call mklongdwi.r from within did.r.
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> did.r

function(data,ids)

{

dat<-datalids,]

dat<-mklongdwi.r(dat)
beta<-1m(VL"A+time+Axtime,data=dat)$coef

rd<-beta[4]
beta<-glm(VL~A+time+A*time,family=poisson,data=dat)$coef
logrr<-beta[4]
beta<-glm(VL~A+time+A*time,family=binomial,data=dat)$coef
logor<-betal[4]

c(rd,logrr,logor)

¥

> bootdid.r

function ()

{

stand.out<-boot (data=doublewhatifdat,statistic=did.r,R=1000)
stand.est<-summary(stand.out)$original

stand.SE<-summary (stand.out) $bootSE
stand.lci<-stand.est-1.96*stand.SE
stand.uci<-stand.est+1.96%stand.SE

list(stand.est=stand.est,stand.SE=stand.SE,stand.lci=stand.lci,stand.uci=stand.uci)

}
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Table 12: Difference-in-Differences Estimation of the ATT for the Double
What-If? Study

Measure  Truth Estimate 95% CI

RD 20360 -0.355 (-0.439, -0.272)
RR 0.356  0.400 (0.313, 0.512)
OR 0.196  0.206 (0.139, 0.307)
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Connection to Lord’'s Paradox

» Lord’s Pardox pertains to unrestricted pre-treatment Yy and post-treatment Y;
variables and the so-called ANCOVA model

E(Y1|Y0,A) = BY0 + 1A + ag,
where furthermore
E(Y0|A = 1) = (041 + ao)/(l — ﬂ)

and
E(Yo|A=0) = ap/(1 - B),

which render the difference-in-differences (DiD) estimand equal to zero, i.e.

E(Ys— YolA=1)=E(Y1 — Yo|A=0) =0

» We observe that it can also pertain to binary Y7 and Yj as long as 3, a1, and
o are such that E(Y1|Yp, A) and E(Yp|A) belong to [0,1].
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Connection to Lord’'s Paradox

» The DiD assumption can be expressed as
E(Y1(0)|JA=1) = E(Yo|A=1) — E(Yo]A=0) + E(Y1|A=0).

For unrestricted Yp and Y7, this assumption is compatible with any distribution
of the observed data (Y, A, Y1). For binary Y; and Yj, it is only compatible
when the right-hand side belongs to [0,1].
Under the DiD assumption and the ANCOVA model, the average effect of
treatment on the treated (ATT) estimand is the DiD estimand, which equals
zero.

» Under the standardization assumption

(Y1(0), Y1(1)) LL A Yo
and the ANCOVA model, the ATT estimand equals
Ey,E(Y1|Y0,A=1) — Ey,E(Y1| Y0, A = 0),
which equals
BE(Y1(0)) + a1 + ao — B(E(Y1(0)) — ap = 1.

» Therefore, unless a; = 0, the DiD and standardization estimators will conflict
with one another. Moreover, either estimator could be valid, unless the outcome
is restricted and the expression for E(Y1(0)|A = 1) is out of bounds.
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In Closing

>

In closing, DiD estimation is an attractive method to adjust for confounding in
settings involving comparisons of pre- and post-exposure measures Yy and Y
or, more generally, of pre-exposure prognostic scores H and post-exposure
measures Y7.

The linear DiD assumption can be expressed as

E(Y1(0)]A=1) = E(H|IA=1) — E(H|A=0) + E(Y1]A = 1). For binary
datasets, the linear DiD assumption could only be valid when the right-hand
side belongs to [0,1]. For unrestricted outcomes, it could always be valid. When
the linear DiD assumption is valid, one can estimate E(Y1(0)|A = 1) with an
estimate of the right-hand side and combine it with an estimate of E(Y1|A=1)
to estimate any of the linear, loglinear, and logistic ATT; the loglinear or logistic
DiD assumptions could be valid when the linear one is not.

Standardization could also be valid in any setting.

Lord’'s Paradox is that DiD estimation and ANCOVA estimation (which, in his
example, is equivalent to estimation of the ATT using standardization) can lead
to conflicting results. We show that there is no good resolution to the paradox
regarding estimation of the causal average effect of treatment on the treated;
assuming the ANCOVA model holds, DiD estimation is valid when the DiD
assumption holds, whereas ANCOVA estimation is valid when the stratified
randomized trial assumption (Y1(0), Y1(1)) II A| Yy holds.

When both approaches could be valid, we recommend trying each of them to
make sure that results are qualitatively similar.

If they are not similar, then caution is warranted in interpreting results, and the
study may be deemed inconclusive.
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Extra Material: Doubly Robust Standardization

» It is natural to question when one should consider using standardization with an
outcome model versus with an exposure model versus doubly robust
standardization.

» When the first two methods give discrepant answers, doubly robust
standardization might help choose between them.

» However, if we choose doubly robust standardization in the first place, we might
pay a price in terms of variability of the estimate.

» One might think that standardization with the exposure model would be
preferable when the outcome indicates a rare condition.

P> To see this, first suppose the condition is not rare.
» We might have 3000 individuals and 50%, or 1500, with the condition.

» Using the rule of thumb for logistic regression presented in Chapter 2, we should
be able to include 150 covariates in the outcome model.

» Now suppose the condition is rare, and 1%, or 30, have it. Our rule of thumb
now suggests we can only include 3 covariates in the outcome model.

» If our sufficient confounder, H, is high-dimensional, what do we do?

» Suppose the exposure, T, is divided more evenly: that is, we have 600 with
T = 1. This would suggest we can include 60 covariates in the exposure model.
Would it not be preferable to use only the exposure model for standardization?
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oubly Robust Standardization

» To investigate, we turned to the simulation study simdr.r with ss indicating
the number of columns of H.

» The columns of H were independent indicator variables each with probability
0.05.

» We simulated T as indicator variables with probabilities that varied as a linear
function of H, such that approximately 600 individuals had T = 1.

> We simulated Y; as a function of T; and X3° , Hy, such that approximately 35
individuals had Y = 1.

» The mean of Ziszl
from 0.00 to 2.80.

> P(T = 1|H) ranged from 0.041 to 0.468.
> E(Y|T,H) ranged from 0.000 to 0.036.

> The range of &(H;) fitted with a correctly specified linear exposure model was
-0.037 to 0.575.

» Because the propensity score should not be negative, we also tried a logistic
exposure model for exposure model standardization, even though it was not
correctly specified.

Hj, was fixed at one, but when ss was set to 100, it ranged
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oubly Robust Standardization

» We let ss, which directly relates to the number of covariates in the model, equal
40 and 100.

» We would have expected exposure-model standardization to be best with 40,
and we would have expected all methods to break down with 100.

» However, this did not happen.

» To try to force the outcome-modeling and doubly robust standardization to
break down, we overspecified the outcome model, using

Y T*H

to include all two-way interactions between T and the columns of H.
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Doubly Robust Standardization

> simdr.r

function(ss=100)

{

H<-matrix(0,3000,ss)
probH<-rep(0.05,3000)

for (i in 1:ss)

{
H[,il<-rbinom(n=3000,size=1,prob=probH)
}

sumH<-apply (H, 1, sum) * (20/ss)
#return(range (sumH))

probT<-.13*sumH + .05*rnorm(n=3000,mean=1,sd=.1)
#return(range (probT))
T<-rbinom(n=3000,size=1,prob=probT)
#return(sum(T))

prob¥<-.01*T + .Ol*sumH

#return(range (probY))
Y<-rbinom(n=3000,size=1,prob=probY)
#return(sum(Y))

e<-fitted(1m(T"H))

e2<-predict (glm(T"H,family=binomial) ,type="response")
#return(range(e))

wo<-(1-T)/(1-e)

wi<-T/e

w02<-(1-T)/(1-e2)

wi2<-T/e2
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Doubly Robust Standardization

datO<-dati<-dat<-data.frame(cbind(Y,T))

dat0$T<-0

dat1$T<-1

out<-1m(Y~T*H)

EYOout<-mean (predict (out,newdata=dat0))
EYlout<-mean(predict (out,newdata=dat1))
EYOexp<-weighted.mean(Y,w=w0)
EYlexp<-weighted.mean(Y,w=w1)
EYOexp2<-weighted.mean(Y,w=w02)
EYlexp2<-weighted.mean(Y,w=w12)

EYOdr<-mean(wO*Y + predict(out,newdata=dat0)*(T-e)/(1-e))
EYldr<-mean(w1*Y - predict(out,newdata=datl)*(T-e)/e)
EYTO=mean (Y*(1-T))

EYT1=mean(Y*T)

list (EYOexp=EYOexp,EYlexp=EYlexp,EYOexp2=EYOexp2,
EYlexp2=EYlexp2,EYTO=EYTO,EYT1=EYT1,
EYOout=EYOout,EYlout=EYilout,EYOdr=EYOdr,EY1dr=EY1dr)
s
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Doubly Robust Standardization

The results of the simulation study that collected the results of running simdr.r
1000 times, in order to obtain the sampling distribution of the estimators, are
presented in Tables 13 and 14.

The unadjusted estimator EYTO estimates E(Y|T = 0), and EYT1 estimates
E(Y|T =1).
The estimators EYOexp and EYlexp use exposure model standardization with the

correctly specified linear exposure model, whereas EYOexp2 and EYlexp2 use
exposure model standardization with the incorrect logistic exposure model.

The estimators EYOout and EYlout use outcome model standardization with the
overspecified outcome model.

The doubly robust estimators EYOdr and EY1dr use the overspecified outcome
model and the correctly specified linear exposure model.

The mean and standard deviation columns show the means and standard
deviations of the sampling distributions of the estimators.

The P-value column tests whether our sample of 1000 estimators comes from a
sampling distribution with a true mean equal to E(Y(0)) = 0.01 or
E(Y(1)) = 0.02, whichever is relevant.
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Doubly Robust Standardization

Table 13: Sampling Distribution of Estimators from Simulation Study
Investigating Small-Sample Robustness: True E(Y(0)) = 0.01, True
E(Y(1)) = 0.02, with 40 Columns of H

Estimator Description Mean Standard Deviation P-Value
EYTO Unadjusted 0.0076 0.0015 0.00
EYT1 Unadjusted 0.0042 0.0012 0.00
EYOexp Linear Exposure Model 0.0100 0.0021 0.92
EYlexp Linear Exposure Model 0.0195 0.0127 0.19
EYOexp2 Logistic Exposure Model 0.0101 0.0021 0.42
EYlexp2 Logistic Exposure Model 0.0204 0.0064 0.07
EYOout Overspecified Outcome Model 0.0100 0.0021 0.79
EYlout Overspecified Outcome Model 0.0200 0.0066 0.84
EYOdr Doubly Robust 0.0100 0.0021 0.82
EYldr Douby Robust 0.0197 0.0106 0.37
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Doubly Robust Standardization

Table 14: Estimated Sampling Distribution of Estimators from Simulation
Study Investigating Small-Sample Robustness: True E(Y(0)) = 0.01,
True E(Y(1)) = 0.02, with 100 Columns of H

Estimator Description Mean Standard Deviation P-Value
EYTO Unadjusted 0.0079 0.0016 0.00
EYT1 Unadjusted 0.0038 0.0012 0.00
EYOexp Linear Exposure Model 0.0100 0.0020 0.61
EYlexp Linear Exposure Model 0.0196 0.0562 0.81
EYOexp2 Logistic Exposure Model 0.0100 0.0020 0.73
EYlexp2 Logistic Exposure Model 0.0200 0.0068 0.96
EYOout Overspecified Outcome Model 0.0100 0.0020 0.74
EYlout Overspecified Outcome Model 0.0200 0.0069 0.74
EYOdr Doubly Robust 0.0100 0.0020 0.72
EYldr Douby Robust 0.029 0.1891 0.14
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Doubly Robust Standardization

» The only estimators with P-values < 0.05 are the unadjusted estimators EYTO
and EYT1.

» Indeed, we observe from the means of their sampling distribution, 0.0076 and
0.0042, that the unadjusted estimators are biased for the true values, 0.01 and
0.02.

» This confirms that standardization is necessary.

» The standard deviations of the sampling distribution indicate how variable the
estimators are; smaller standard deviations are desirable, provided bias is
negligible.

» We see that the standard deviation of the sampling distribution is larger for the
correctly specified linear exposure model than it is for the incorrectly specified
logistic model, which happens to exhibit negligible bias.

» Surprisingly, the standard deviations for the overspecified outcome model are
about the same as for the logistic exposure model, despite that the outcome is
rare.
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Doubly Robust Standardization

» Finally, we see large standard deviations for the doubly robust estimators of
E(Y(1)), particularly for 100 columns of H.

» The doubly robust estimator appears to be the first to break down as we move
from 40 to 100 confounders, with the correctly specified linear exposure model
second.

» |n conclusion, all of the methods were robust with 40 confounders, and even
with 100 confounders, results were not horrible. In particular, we question the
logic that might lead to a choice of exposure-model standardization over
outcome-model standardization with the outcome indicating a rare condition.
Furthermore, we caution against using the doubly robust approach with
high-dimensional confounders.
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