
Comparison of the Four Methods

1. Draw a causal DAG corresponding to the R code of compare.r below. Run the simu-
lation and store the data in comparedat.

compare.r<-function()

{

set.seed(999999999)

H<-rbinom(n=100000,size=1,prob=.4)

T<-rbinom(n=100000,size=1,prob=.5)

probA<-T*H*.6 + (1-T)*H*.3 + T*(1-H)*.3 + (1-T)*(1-H)*.1

A<-rbinom(n=100000,size=1,prob=probA)

probS<-A*.5 + (1-A)*.1

S<-rbinom(n=100000,size=1,prob=probS)

probY<-H*S*.75 + H*(1-S)*.5 + (1-H)*S*.5 + (1-H)*(1-S)*.2

Y<-rbinom(n=100000,size=1,prob=probY)

out<-data.frame(cbind(T,H,A,S,Y))

out

}

2. Assuming consistency, derive the true values for (1)E(Y (1)|A = 1) and (2)E(Y (0)|A =
1), as well as the average effect of treatment on the treated (ATT) expressed in terms
of the (3) risk difference, (4) relative risk, and (5) odds ratio.

3. Use the outcome-modeling approach to standardization with a nonparametric model
to estimate all five quantities and provide bootstrap confidence intervals.

4. Letting Y0 = H and Y1 = Y , use the difference-in-difference approaches based on a
linear, loglinear, and logistic model to estimate quantities (3), (4), and (5) and provide
bootstrap confidence intervals.

5. Use the front-door method modified for the ATT to estimate all five quantities and
provide bootstrap confidence intervals.

6. Suppose data on S and H are unavailable, and use the instrumental variables approach
with the (a) linear, (b) loglinear, and (c) logistic structural nested mean models to
estimate all five quantities and provide jackknife confidence intervals. Note that you
will have three estimates of each of the five quantities. Also note that running the
jackknife with such a large dataset takes a very long time. In case you run out of time,
modify the sample size to 1,000.

7. Comment on the validity of the estimates you provided for questions 3 through 6.
Make sure to note necessary assumptions.

8. Suppose compare.r generated data from a true associational DAG, but that the DAG
was not causal. Suppose the additive equiconfounding assumption for the difference-in-
differences approach is known to hold (see equation 18 from Module 2), with Y0 = H.
Comment on the validity of the estimates you provided for questions 3 through 6.
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Solutions

1. Draw a causal DAG corresponding to the R code of compare.r below. Run the simu-
lation and store the data in comparedat.

compare.r<-function()

{

set.seed(999999999)

H<-rbinom(n=100000,size=1,prob=.4)

T<-rbinom(n=100000,size=1,prob=.5)

probA<-T*H*.6 + (1-T)*H*.3 + T*(1-H)*.3 + (1-T)*(1-H)*.1

A<-rbinom(n=100000,size=1,prob=probA)

probS<-A*.5 + (1-A)*.1

S<-rbinom(n=100000,size=1,prob=probS)

probY<-H*S*.75 + H*(1-S)*.5 + (1-H)*S*.5 + (1-H)*(1-S)*.2

Y<-rbinom(n=100000,size=1,prob=probY)

out<-data.frame(cbind(T,H,A,S,Y))

out

}

The DAG is shown below.

H

T YA S

Figure 1: DAG corresponding to compare.r

2. Assuming consistency, derive the true values for (1)E(Y (1)|A = 1) and (2)E(Y (0)|A =
1), as well as the average effect of treatment on the treated (ATT) expressed in terms
of the (3) risk difference, (4) relative risk, and (5) odds ratio.

Given consistency, we can estimate E(Y (1)|A = 1) via E(Y |A = 1). From the DAG, we
see that H is a sufficient confounder, so that E(Y (0)|A = 1) = EH|A=1E(Y |H,A = 0).

From the code,

E(Y |H,S,A) = .75HS + .5H(1− S) + .5(1−H)S + .2(1−H)(1− S),
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so that

E(Y |H,A) = .75HE(S|A,H)+.5H(1−E(S|A,H))+.5(1−H)E(S|A,H)+.2(1−H)(1−E(S|A,H)).

From the code,
E(S|A,H) = .5A+ .1(1− A) = .4A+ .1,

so that

E(Y |H,A) = .75H(.4A+ .1)+ .5H(.9− .4A)+ .5(1−H)(.4A+ .1)+ .2(1−H)(.9− .4A).
(1)

From the multiplication rule,

P (H = h|A = a) =
P (A = a|H = h)P (H = h)

P (A = a)
.

From the law of total probability,

P (A = 1|H = h) = ΣtP (A = 1|H = h, T = t)P (T = t). (2)

From the code and double expectation, we have that

P (H = 1) = .4

and
P (A = 1) = .4 ∗ .5 ∗ .6 + .5 ∗ .4 ∗ .3 + .3 ∗ .5 ∗ .6 + .1 ∗ .6 ∗ .5 = 0.3.

From (2) we have that

P (A = 1|H = 0) = .1 ∗ .5 + .3 ∗ .5 = .2

and
P (A = 1|H = 1) = .3 ∗ .5 + .6 ∗ .5 = .45.

Finally,

P (H = 1|A = 1) = P (A = 1|H = 1)P (H = 1)/P (A = 1) = .45 ∗ .4/.3 = .6,

so that
P (H = 0|A = 1) = 0.4.

Returning to (1) and substituting in,

E(Y |H,A = 0) = .75H.1 + .5H.9 + .5(1−H).1 + .2(1−H).9.

Therefore,

E(Y (0)|A = 1) = .525E(H|A = 1)+ .23(1−E(H|A = 1)) = .525∗ .6+ .23∗ .4 = 0.407.

Furthermore,

E(Y |H,A = 1) = .75H.5 + .5H.5 + .5(1−H).5 + .2(1−H).5 = .625H + .35(1−H),
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so that

E(Y |A = 1) = .625E(H|A = 1) + .35(1− E(H|A = 1)) = .625 ∗ .6 + .35 ∗ .4 = 0.515.

Therefore the true values are

E(Y (0)|A = 1) = 0.407

E(Y (1)|A = 1) = 0.515

RD = 0.108

RR = 1.265

OR = 1.547

3. Use the outcome-modeling approach to standardization with a nonparametric model
to estimate all five quantities and provide bootstrap confidence intervals.

We use the following code together with the bootstrap.

standatt.r<-function(data,ids)

{

dat<-data[ids,]

EHA<-mean(dat$H[dat$A==1])

beta<-lm(Y~A*H,data=dat)$coef

EY0A<-beta[1]+beta[3]*EHA

EY1A<-beta[1]+beta[2]+beta[3]*EHA+beta[4]*EHA

rd<-EY1A-EY0A

logrr<-log(EY1A/EY0A)

logor<-log(EY1A*(1-EY0A)/((1-EY1A)*EY0A))

c(EY0A,EY1A,rd,logrr,logor)

}

The estimates and confidence intervals are presented in Table 1.

4. Letting Y0 = H and Y1 = Y , use the difference-in-difference approaches based on a
linear, loglinear, and logistic model to estimate quantities (3), (4), and (5) and provide
bootstrap confidence intervals.

We use the following code together with the bootstrap.

> mklong.r

function(dat=exam2dat)

{

longdat<-data.frame("Y"=rep(0,2*nrow(dat)),"A"=rep(dat[,"A"],each=2),

"time"=rep(c(0,1),times=nrow(dat)))

longdat$Y[c(TRUE,FALSE)]<-dat[,"H"] # this is Y_0

longdat$Y[c(FALSE,TRUE)]<-dat[,"Y"] # this is Y_1

longdat

}
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> didlinear.r

function(data=exam2dat,ids=c(1:nrow(exam2dat)))

{

dat<-data[ids,]

dat<-mklong.r(dat)

beta<-lm(Y~A+time+A*time,data=dat)$coef

rd<-beta[4]

EY1<-mean(dat$Y[(dat$A==1)&(dat$time==1)])

EY0<-EY1-rd

logrr<-log(EY1)-log(EY0)

logor<-log(EY1)-log(1-EY1)-log(EY0)+log(1-EY0)

c(EY0,EY1,rd,logrr,logor)

}

> didloglinear.r

function(data=exam2dat,ids=c(1:nrow(exam2dat)))

{

dat<-data[ids,]

dat<-mklong.r(dat)

beta<-glm(Y~A+time+A*time,family=poisson,data=dat)$coef

logrr<-beta[4]

EY1<-mean(dat$Y[(dat$A==1)&(dat$time==1)])

EY0<-EY1/exp(logrr)

rd<-EY1-EY0

logor<-log(EY1)-log(1-EY1)-log(EY0)+log(1-EY0)

c(EY0,EY1,rd,logrr,logor)

}

> didlogistic.r

function(data=exam2dat,ids=c(1:nrow(exam2dat)))

{

dat<-data[ids,]

dat<-mklong.r(dat)

beta<-glm(Y~A+time+A*time,family=binomial,data=dat)$coef

logor<-beta[4]

EY1<-mean(dat$Y[(dat$A==1)&(dat$time==1)])

tmp<-log(EY1/(1-EY1)) - logor

EY0<-exp(tmp)/(1+exp(tmp))

rd<-EY1-EY0

logrr<-log(EY1)-log(EY0)

c(EY0,EY1,rd,logrr,logor)

}

The estimates and confidence intervals are presented in Table 1, with 4a, 4b, and 4c
using the linear, loglinear, and logistic DiD approaches, respectively.

5. Use the front-door method modified for the ATT to estimate all five quantities and
provide bootstrap confidence intervals.

We use the following code together with the bootstrap.
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frontdooratt.r<-function(data=exam2dat,ids=c(1:nrow(exam2dat)))

{

dat<-data[ids,]

tmp00<-(1-mean(dat$S[dat$A==0]))*mean(dat$Y[(dat$S==0)&(dat$A==1)])

tmp01<-(mean(dat$S[dat$A==0]))*

mean(dat$Y[(dat$S==1)&(dat$A==1)])

EY0<-tmp00+ tmp01

EY1<-mean(dat$Y[dat$A==1])

RD<-EY1-EY0

logRR<-log(EY1/EY0)

logOR<-log(EY1/(1-EY1)) - log(EY0/(1-EY0))

c(EY0,EY1,RD,logRR,logOR)

}

The estimates and confidence intervals are presented in Table 1.

6. Suppose data on S and H are unavailable, and use the instrumental variables approach
with the (a) linear, (b) loglinear, and (c) logistic structural nested mean models to
estimate all five quantities and provide jackknife confidence intervals. Note that you
will have three estimates of each of the five quantities. Also note that running the
jackknife with such a large dataset takes a very long time. In case you run out of time,
modify the sample size to 1,000.

We use the following code together with the jackknife.

ividentity.r<-function(data)

{

dat<-data

Deta<-predict(glm(Y~A*T,data=dat),type="link")

Ystar<-Deta

Astar<- dat$A

Z<- dat$T

beta<-ivreg(formula=Ystar~Astar,instruments=~Z)$coef[2]

EY1<-mean(Deta[dat$A==1])

EY0<-mean((Deta-dat$A*beta)[dat$A==1])

RD<-EY1-EY0

logRR<-log(EY1/EY0)

logOR<-log(EY1/(1-EY1)) - log(EY0/(1-EY0))

c(EY0,EY1,RD,logRR,logOR)

}

ivlog.r<-function(data)

{

dat<-data

niter=10

A<-dat$A
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Z<-dat$T

Deta<-predict(glm(Y~A*T,family=poisson,data=dat),type="link")

betat<--1

for (i in 1:niter)

{

#cat("i = ",i,"\n")

Ystar<-exp(Deta-A*betat)*(1+A*betat)

Astar<-A*exp(Deta-A*betat)

betat<-ivreg(formula=Ystar~Astar,instruments=~Z)$coef[2]

#cat("betat = ",betat,"\n")

}

beta<-betat

EY1<-mean(exp(Deta)[A==1])

EY0<-mean(exp(Deta-A*beta)[A==1])

RD<-EY1-EY0

logRR<-log(EY1/EY0)

logOR<-log(EY1/(1-EY1)) - log(EY0/(1-EY0))

c(EY0,EY1,RD,logRR,logOR)

}

ivlogit.r<-function(data)

{

dat<-data

niter<-10

A<-dat$A

Z<-dat$T

Deta<-predict(glm(Y~A*T,family=binomial,data=dat),type="link")

betat<-0

for (i in 1:niter)

{

#cat("i = ",i,"\n")

tmp<-exp(Deta-A*betat)/(1+exp(Deta-A*betat))

Ystar<-tmp*(1+A*betat*(1-tmp))

Astar<- A*tmp*(1-tmp)

betat<-ivreg(formula=Ystar~Astar,instruments=~Z)$coef[2]

#cat("betat = ",betat,"\n")

}

beta<-betat

EY1<-mean((exp(Deta)/(1+exp(Deta)))[A==1])

EY0<-mean((exp(Deta-A*beta)/(1+exp(Deta-A*beta)))[A=1])

RD<-EY1-EY0

logRR<-log(EY1/EY0)

logOR<-log(EY1/(1-EY1)) - log(EY0/(1-EY0))

c(EY0,EY1,RD,logRR,logOR)

}

The estimates and confidence intervals are presented in Table 1.
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7. Comment on the validity of the estimates you provided for questions 3 through 6.
Make sure to note necessary assumptions.

The estimates all require the consistency assumption. The positivity assumption can
be checked from the simulation and it holds. The estimates for question 3 are valid
because H is a sufficient confounder and we used a nonparametric model. Indeed, the
confidence intervals all cover the true values. The estimates for question 4 are unlikely
to be valid because, as we went over in the short course, typically if standardization is
valid difference-in-differences is not valid. Indeed, the confidence intervals for question
4, with the exception of those for E(Y (1)|A = 1) which do not rely on the DiD
modeling assumptions, do not cover the true values and they all suggest that the
causal effect is in the opposite direction to the truth. This example shows the danger
of just using one method to analyze the data. The estimates for question 5 are valid
because the structure of A,H,S,Y in the DAG is a front-door structure. Indeed, the
confidence intervals all cover the true values. The estimates for question 6 require
exclusion, which can be seen to hold from the simulation, but they also require that
their respective structural nested mean model holds. We see that for the linear SNMM,
the confidence intervals all contain the true values, suggesting that the linear SNMM is
approximately true. We see that for the loglinear SNMM, the confidence intervals also
contain the true values, suggesting that the loglinear SNMM is approximately true.
Finally, we see that for the logistic SNMM, the confidence intervals contain the true
values, so that the logistic SNMM is also approximately true.

8. Suppose compare.r generated data from a true associational DAG, but that the DAG
was not causal. Suppose the additive equiconfounding assumption for the difference-in-
differences approach is known to hold (see equation 18 from Module 2), with Y0 = H.
Comment on the validity of the estimates you provided for questions 3 through 6.

In this case, the estimates for question 4 with the linear DiD model validly estimate
the average effect of treatment on the treated. Standardization, instrumental variables,
and the front door method all fail in this case – we see that their estimates are far
away from the DiD estimates. The conflict between the answers to this question and
the previous one can be viewed as a generalization of Lord’s Paradox (see Module 2).
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