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Some Examples

» Throughout the short course, we refer to real and hypothetical data examples to
motivate and illustrate the concepts and methods.

> We will describe some now.
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Mortality Rates by Country

» Confounding is a term with many definitions. A google search provides a
definition from the Oxford English dictionary (August 13, 2020) of ‘confound’ in
standard English usage: “mix up (something) with something else so that the
individual elements become difficult to distinguish™.

» In statistics and related disciplines, a relationship between one variable and
another was traditionally said to be ‘confounded’ when a third variable, often
termed a ‘lurking’ variable, associated with both could explain part or all of the
relationship, or could even reverse it.

P> With the surge in popularity of causal inference, a more causal definition of
confounding has become prevalent. Wikipedia's (August 13, 2020) first
sentence under ‘confounding’ states: “In statistics, a confounder (also
confounding variable, confounding factor, or lurking variable) is a variable that
influences both the dependent variable and independent variable, causing a
spurious association.”

» In this course, we introduce what we will call a true confounder. We modify the
Wikipedia definition somewhat, to define a true confounder as a variable that
influences the exposure and that also influences the outcome via a directed path
that does not include the exposure (presumably, it will also influence the
outcome via a directed path that includes the exposure). This definition will be
further explained later.
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» The existence of one or more true confounders will typically cause confounding;
that is, the causal effect of the exposure on the outcome cannot be identified
without either (a) adjustment involving the true confounders, or, (b) adjustment
involving other variables that we will refer to simply as confounders.

» In some cases, not all of the true confounders are required for identification of
the causal effect. Confounders other than true confounders are only required
when a sufficient set of true confounders is unavailable.
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Mortality Rates by Country...

» One of the most basic examples often used to illustrate confounding is a
comparison of mortality rates by countries. For example, consider the data in
Table 1, which presents mortality rates by age group in the US and China in
2019 jointly with population figures from 2015.

Table 1: Mortality Rates by Age and Country

Country  Age Group  Deaths Population Rate

us < 65 756,340 282,305,227 0.002679
us 65+ 2,152,660 48,262,955 0.04460
us Overall 2,909,000 330,568,182 0.0088
China < 65 2,923,480 1,297,258,493  0.002254
China 65+ 7,517,520 133,015,479 0.05652
China Overall 10,441,000 1,430,273,973 0.0073
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Mortality Rates by Country...

» The overall death rate in the US in 2019 is 8.8 per 1000, whereas that in China
is only 7.3 per 1000. However, we can calculate that the percent of the US
population aged 65 and over is 14.6%, compared with only 9.3% in China.
Looking at the age-specific mortality rates shows that the older population in
the US had a mortality rate of 4.46%, whereas that in China had a rate of
5.65%. The mortality rates for the younger populations are more similar, in
absolute terms: 0.268% in the US versus 0.225% in China.

» This is nearly an example of Simpson’s paradox, which refers to a relationship
between two variables that reverses when a third variable is considered.

» That is, when we ignore age, the mortality rate is higher in the US than in
China, but when we look within age category, the comparison reverses in the
older age group (though not in the younger one).

» It is possible that if we were to break down the death rates further in the
younger age group, we would find that they are uniformly lower in the US. In
that case, the paradox would be complete.
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National Center for Education Statistics 2018 Data

» The Integrated Postsecondary Education Data System (IPEDS) is a system of
interrelated surveys conducted annually by the U.S. Department of Education’s
National Center for Education Statistics (NCES). IPEDS annually gathers
information from about 6,400 colleges, universities, and technical and vocational
institutions that participate in the federal student aid programs. Table 2
presents a subset of the admissions data from the NCES IPEDS access database
provisionally for 2018-2019. The admissions data were collected in Fall of 2018;
the table includes data from institutions that enrolled at least one man and
woman in Fall 2018 and that also reported SAT scores.

Table 2: NCES Data

selective female highmathsat n

0 0 435
0 0 1 87
0 1 0 420
0 1 1 37
1 0 0 50
1 0 1 104
1 1 0 55
1 1 1 29
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NCES 2018...

» The variable selective indicates that the institution admitted less than 50% of
applicants. An indicator variable, such as selective, for a condition is coded as
1 to indicate the condition and 0 to indicate the absence of the condition. The
variable female indicates that more than 60% of students admitted were
women. The variable highmathsat indicates that the average of the 25 and
75t percentiles of the math SAT scores for enrollees was greater than 600. The
number of institutions represented by a row is n.
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Reducing Alcohol Consumption: The What-If? Study

Table 3: The What-If? Study

T A H Y n
0 0 0 0 15
0 0 0 1 3
0 0 1 0 3
0 0 1 1 11
0 1 0 0 36
0 1 0 1 4
0 1 1 0 4
0 1 1 1 9
1 0 0 0 15
1 0 0 1 3
1 0 1 0 3
1 0 1 1 7
1 1 0 0 27
1 1 0 1 3
1 1 1 0 9
1 1 1 1 13
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The What-If? Study...

» The WHAT-IF? (Will Having Alcohol Treatment Improve my Functioning?)
study (Cook 2019) was a double-blind randomized clinical trial in which eligible
women received either naltrexone 50 mg orally or placebo for 4 months,
allocated in a 1:1 ratio, with assessments at baseline (i.e. at month zero, just
before randomization) and at follow-up visits at 2, 4, and 7 months.

> Women living with HIV (WLWH) were eligible if they were 18 years or older and
met past-month criteria for unhealthy alcohol use (>7 drinks/wk or >3 drinks
on one single day at least twice).

> Naltrexone is an FDA-approved medication to help reduce drinking.

» In the dataset, T = 1 denotes naltrexone and T = 0 placebo, A = 1 denotes
reduced drinking (less than or equal to 7 drinks per week) for the 30 days prior
to month 4, H = 1 denotes unsuppressed HIV viral load (> 200 copies/ml) at
baseline, and Y = 1 denotes unsuppressed HIV viral load at month 4. The
number of people represented in each row is given by n.

» This choice of notation will be used throughout the book, with T and A to
denote observed or randomized treatments, H to denote the medical history
influencing A or T, and Y to denote the outcome.
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The What-If? Study...

Questions of interest that can be addressed with What-If? study data are
numerous, and we have presented just a subset of the available data.

A primary aim of the study was to determine if naltrexone leads to reduced
drinking at 4 months. This can be addressed with a chi-squared test (with the R
function chisq.test specifying correct=F) of the association between T and A
(65% for naltrexone versus 62.4% for placebo reduced drinking, P=0.72).

One of the challenges with the What-If? study was that the participants were,
in general, highly motivated to reduce drinking. Additionally, there was a small
monetary incentive to participate, and participation required self report of heavy
drinking, which meant that some participants may have consumed alcohol at a
reduced rate even at baseline but reported it as heavy.

These features implied limited chance of success for naltrexone to appear
effective in this study population.

One secondary aim was to determine if naltrexone induced improvements in
clinical outcomes, such as viral load. In the naltrexone arm, 32.5% had
unsuppressed viral load at month 4, versus 31.8% on placebo (P=0.92).

Had this difference been larger, but still not statistically significant, we might
have wished we had planned to use H, viral load at baseline, as a precision
variable in our analysis, to reduce the variability in our comparison. Including a
precision variable in the analysis can essentially subtract some of the variability
in the outcome.
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The What-If? Study...

» We can also investigate whether reducing drinking is associated with suppressed
viral load; we observe 27.6% who reduced drinking have unsuppressed viral load
at month 4, versus 40% who did not (P=0.1). A problem with this comparison
is that the apparent effect of reducing drinking might be confounded.

» Once again, we will use H in the analysis, but this time as a confounder rather
than as a precision variable.

> We will also use the What-If? study data to illustrate standardization and
doubly robust estimation.

> Using just the binary data of Table 3, we will introduce difference-in-differences
estimators and compare that approach to adjusting for confounding with
standardization.

> We will also use the binary data to illustrate instrumental variables estimation as
another alternative method for adjusting for confounding.
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The Double What-If? Study

» It is not uncommon for human studies to go awry in one way or another.
Humans are exceedingly complex and heterogeneous, and they vary over time in
unpredictable ways. Indeed, one of the reasons to learn methods for causal
inference is so that we can adjust for some of these vagaries in statistical
analyses.

» However, it can be very helpful for learning and understanding the methods to
actually know the causal mechanisms generating the data.

> For that reason, we introduce the Double What-If? Study (What If the
What-If? Study had confirmed theory?) for illustration throughout the short
course.
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The Double What-If? Study...

P> We simulated the data according to hyothetical known causal mechanisms
depicted in Figure 1.

Figure 1: The Double What-If? Study

AD, —— VL, T AD, ——— VL,
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The Double What-If? Study...

» We will learn about causal directed acyclic graphs later, but an intuitive
understanding of cause and effect represented via a single-headed arrow should
suffice for an introduction to the study.

» For expository purporses, all variables are coded as binary.

» The variable U is latent, or unmeasured, variable representing a propensity for
healthy behaviors (U = 1). The variables ADy and AD; represent adherence to
HIV antiretroviral medication at times zero (ADy = 1) and one (AD; = 1). The
variables VLg and VL; represent unsuppressed HIV viral load at times zero
(VLo =1) and one (VL1 =1).

» Note that antiretroviral adherence causes viral load even though it is coded at
the same timepoint; adherence is summarizing a time period culminating at the
timepoint whereas viral load is measured at that timepoint. The variable T
represents randomization to naltrexone (T = 1) versus placebo (T = 0). There
is no arrow into T because nothing causes it except for the randomization tool.
The variable A represents reduced drinking (A = 1).

P> We see that naltrexone causes reduced drinking, but so does a propensity for
healthy behaviors, which also turns out to be associated with VLj, viral load at
time one (end of study) via a connection with ADy, adherence to antiretrovirals
at time zero.
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ouble What-If? Study...

» Throughout the short course we will compare different methods for adjusting for
confounding of the effect of A on VL;, including standardization,
difference-in-differences, and instrumental variables.

We observe that the effect of A on VL; is mediated through AD;. That is, the
mechanism by which reduced drinking causes suppressed viral load is the

influence of reduced drinking on adherence to antiretroviral medication, which in
turn controls viral load.
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The Double What-If? Stud

One of the beauties of investigating statistical methods with simulated data is that we
know the truth. The R code for simulating the Double What-If? Study data is shown
below.

doublewhatifsim.r<-function()

{

set.seed(444)
U<-rbinom(n=1000,size=1,prob=.5)
ADOprob<-.2+.6%U
ADO<-rbinom(n=1000,size=1,prob=ADOprob)
VLOprob<-.8 - .4*ADO
VLO<-rbinom(n=1000,size=1,prob=VLOprob)
T<-rbinom(n=1000,size=1,prob=.5)
Aprob<- .05+ T*Ux*.8
A<-rbinom(n=1000,size=1,prob=Aprob)
AD1prob<-.1+.8*A
AD1<-rbinom(n=1000,size=1,prob=AD1prob)
VL1prob<-VLOprob +.1 - .45%AD1
VL1<-rbinom(n=1000,size=1,prob=VL1prob)
dat<-cbind (ADO,VLO,T,A,AD1,VL1)
doublewhatifdat<-data.frame(dat)
doublewhatifdat
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The Double What-If? Study...

> We set the randomization seed to 444 so that anyone running the code will
produce the exact same data set.

» We simulated all binary variables using independent Bernoulli random variables
with probability prob, where prob depends on the causal parents.

» The Bernoulli distribution models a weighted coin toss; independent Bernoulli
random variables model repeated but unrelated weighted coin tosses.

» The Bernoulli distribution is a special case of the Binomial distribution, and
therefore the rbinom with size=1 generates Bernoulli random variables. We
generate n=1000 of them with probabilities given by prob, where the sample size
of the study is n=1000.

» The variable names match the ones in Figure 1, except that when ‘prob’ is
appended, it is not a random variable, but rather a collection of probabilities
used for the weighted coin tosses for that variable. For example, we see that
VLOprob<-.8-.4*ADO.

» This means that the probability of unsuppressed viral load is 0.8 without
adherence to antiretrovirals at time zero, but with adherence, it is 0.8-0.4=0.4.
Therefore, patients on antiretrovirals at time zero will be more likely to have
suppressed viral load, or VLO equal to zero.
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The RECOVERY Trial

» Coronavirus disease 2019 (COVID-19) causes diffuse lung damage that may
progress to respiratory failure and death.

» The RECOVERY trial was a randomized, controlled, open-label, adaptive,
platform trial comparing several possible treatments for COVID-19. We pulled
results from a preliminary report on June 22, 2020 for the comparison of
dexamethasone 6mg given once daily for up to ten days versus usual care alone
in terms of 28-day mortality.

» Although the report presents a more sophisticated analysis, our simple
comparison yields essentially identical results.

» The data are presented in Table 4 on the next slide, where T =1 for
dexamethasone and T = 0 for usual care, and Y = 0 for death within 28 days
and Y =1 for survival for at least 28 days; n is the number of patients per row.

> We calculated E(Y|T =1) = 0.823 and E(Y|T =0) = 0.754, with a
chi-squared test of the difference yielding a p-value of 0.032. These results
suggest that dexamethasone can increase 28-day survival, to some extent.
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The RECOVERY Trial

Table 4: A Randomized Trial of Dexamethasone versus Usual Care

T Y n

0 0 1065
0 1 3256
1 0 454
1 1 2104
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Potential Outcomes and the Consistency Assumption

» We will use the potential outcomes framework for causal inference in this short
course.

» The RECOVERY trial raised a natural question for citizens of the world in the
summer of 2020: if hospitalized for COVID-19, should we hope to receive
dexamethasone? That is, would receiving it cause our survival?

» Thinking through this question carefully, what we really would like to do is
compare our 28-day survival were we to receive dexamethasone with our 28-day
survival were we to receive usual care.

» That is, we would like to compare our potential outcome Y(1) to treatment
with T = 1 with our potential outcome Y(0) to treatment with T = 0.

» Throughout the text, we will use parenthetical notation, such as Y(t), to
denote potential outcomes, such as the potential outcome to T = t.

> We can contrast the potential outcomes Y(0) and Y(1) with the observable
outcome Y that we would experience were we enrolled in the study.
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Potential Outcomes and the Consistency Assumption

» The utility of the potential outcomes framework hinges on the validity of a
consistency assumption that links potential outcomes to observed outcomes.

» This assumption states that if a participant is assigned T = t, the observed
outcome Y equals, or is consistent with, the potential outcome Y(t); that is,
we can write Y = Y(T).

» For a binary treatment, we can also write
Y=Y0)(1-T)+ Y(1)T.

» Under the consistency assumption, we get to observe one potential outcome per
study participant.

» While the potential outcomes are hypothetical and postulated to exist before
treatment is assigned, the observed outcome does not exist until it is assessed,
which is after treatment is assigned.
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cy Assumption

A major problem for causal inference is that we can only observe one potential
outcome per participant.

Therefore, direct comparisons like Y (1) versus Y(0) are impossible.

Holland (1986) called this problem the Fundamental Problem of Causal
Inference (FPCI).

Thus, we can never know for sure whether dexamethasone would help us or not.

An important feature of causal inference is that there must be a basis for
comparison.

Suppose we only observe Y = Y(1) = 1. Can we then say that dexamethasone
caused that outcome?

Without knowing Y'(0), we do not know whether the patient would have died
without dexamethasone; if Y(0) = Y/(1), then receipt of dexamethasone does
not matter, and it is not causal for that patient.

In what follows, we will present two possible routes for circumventing the FPCI.

23/72



cy Assumption

Recall that Y = 0 corresponds to death within 28 days and Y =1 to 28-day
survival.

If we were able to know Y'(0) and Y(1) for the patients in the study, we could
classify them into four causal types:

Doomed: Y(0)=Y(1)=0
Responsive: Y(0)=0,Y(1)=1

Harmed: Y(0)=1,Y(1)=0

Immune: Y0)=Y(1)=1

As we only observe Y, and not the potential outcomes, we cannot pinpoint the
causal type.

However, if a treated patient has Y = 1, the patient must be responsive or
immune, whereas Y = 0, corresponds to doomed or harmed.

For an untreated patient, Y = 1 implies harmed or immune, whereas Y =0
implies doomed or responsive.

For some studies, researchers may believe that the treatment cannot be harmful.
In that case, a treated patient with Y = 0 must be doomed, while an untreated
patient with Y = 1 must be immune.
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Potential Outcomes and the Consistency Assumption

» It is worth emphasizing that the consistency assumption requires the potential
outcomes to be well-defined.

» For example, in vaccine trials, even with a perfect vaccine, a participant’s
potential outcome to not getting the vaccine could depend on what percent of
the study population is vaccinated and on how much that participant interacts
with individuals outside of the study population.

> Let Y =1 indicate infection and Y = 0 no infection, and T = 1 indicate receipt
of a perfect vaccine and T = 0 no receipt.

» If everyone but one participant is vaccinated, and if that person only has
contacts within the study population, then that person will not be exposed to
the infectious disease, so that Y(0) = 0.

» On the other hand, if only half the study population is vaccinated, then that
same unvaccinated participant will have a chance of exposure to the infectious
disease, so that Y(0) could equal 1.

» This example highlights that we cannot use the potential outcomes framework
unless we can carefully define the potential outcomes.

> We could state that Y(t) pertains specifically to a trial with half of the
participants randomized to the vaccine. Extrapolation to a situation in which
80% of the population adopts a vaccine is tenuous.
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Circumventing the Fundamental Problem of Causal

Inference

> Holland (1986) presented two solutions to the fundamental problem of causal
inference.

» The first he called the scientific solution, in which we could use scientific theory
to measure both potential outcomes.

> For example, although we can only know just one of Y;(0) or Y;(1) for
participant i of a study, if we believe participant j is essentially identical to
participant i with respect to the two potential outcomes, we could assign T; =1
and T; =0 so that Y; = Yi(1) and Y; = Y;(0) = Y;(0).

» Thus a contrast of the observables Y; and Y; would be a contrast of the
unobservables Y;(1) and Y;(0).

» An example might be testing a new diet on genetically identical mice.

> Alternatively, an appeal to scientific theory might be used to impute Y;(0), the
potential outcome to no treatment.

> For example, propofol (T; = 1) is a commonly used sedative (Y; = 1) for
colonscopy; an anesthesiologist can safely assume that patient i would not be
sedated with T; = 0; that is, Y;(0) = 0.

> After administering T; = 1, we would observe Y; = Yj(1) and thus whether
propofol causes sedation.
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Circumventing the Fundamental Problem of Causal

Inference

» When we can assume that there are no carry-over effects of treatment T, we
can observe individual i's outcome to T; = 0 at one time point, i.e. Y;1(0) and
to T; =1 at a second time point, i.e. Yj2(1), and assume either Yj;1(0) = Yj2(0)
or Yj2(1) = Yj1(1) so that a contrast such as Yj2(1) — Yi1(0) essentially equals
Yi(1) - Y;(0).

» An example might be testing whether ibuprofen causes headache relief.

27 /72



Circumventing the Fundamental Problem of Causal

Inference

» Holland called the second solution the statistical solution, in which we randomly
assign treatments to individuals.

» For a randomized clinical trial with two treatments (or a treatment and usual
care or placebo) and an assignment probability that does not depend on any
other data, randomization and the consistency assumption together imply that

(Y(0), Y(1)) ', 1)

because the potential outcomes exist prior to treatment, and the treatment is
randomized independently of any existing data.

» The independence at (1) implies mean independence, that is,
E(Y(0)) = E(Y(0)|T = 0).

»> Then, the consistency assumption implies that E(Y'(0)|T =0) = E(Y|T =0),
so that E(Y(0)) = E(Y|T =0).

> Similarly, E(Y(1)) = E(Y|T =1).

> This means that we can estimate the expectation of the unobservables E(Y(0))
and E(Y(1)) with E(Y(0)) = E(Y|T =0) and E(Y(1)) = E(Y|T =1).

» Therefore, rather than contrasting the individual outcomes Y'(1) and Y(0) for
one person, we contrast the average outcomes E(Y(1)) and E(Y(0)) for the
population.
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Circumventing the Fundamental Problem of Causal

Inference

> With the COVID-19 example, we can say that dexamethasone causes an
increased chance of 28-day survival on average for the study population.

» Extrapolation of this result is fraught with difficulty.

> First, though the difference between 75.4% and 82.3% is statistically significant,
it is still possible that it was due to chance.

» Second, the study population may no longer be relevant. New treatments might
have been developed that were not in use at the time of study, or hospital
protocols may have changed, or the population of patients may have changed; it
is unknown how dexamethasone would work in conjunction with newer
treatments or altered hospital protocols or a different case mix of patients.

» Third, and most important, extrapolating an average result to an individual is
problematic.

» There may even be individuals in the study who were harmed by dexamethasone,
but they were more than counterbalanced by individuals who were helped by it.

» And for the majority of patients, the outcome was the same with or without
dexamethasone.
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Circumventing the Fundamental Problem of Causal

Inference

» For many scientific questions that cannot be addressed using the scientific
solution to the FPCI, randomized studies are not feasible, due to ethical
considerations or pragmatic reasons.

» In those cases, we are forced to rely on observational studies, and we must try
our best to adjust for confounding.

> As we will see in the short course, there are several ways to do this, but a
primary method relies on assuming that receipt of treatment effectively followed
a stratified randomized trial, so that

(Y(0), Y(1)) ILA[H, (2

where Y'(a) is the potential outcome to A = a, A is completely randomized
within strata defined by H, and H is the set of confounders thought to be
important for adjustment.

» We also require a positivity assumption, that is,
1> P(A=1|H) >0, 3)

which asserts that individuals with a given level of H have a positive chance of
receiving either A=1or A=0.

30/72



Circumventing the Fundamental Problem of Causal

Inference

» For example, suppose the obsertional study is prone to confounding by
indication, that is, patients who are indicated for the treatment, and hence are
sicker, tend to receive the treatment.

» In this case, the comparison group is healthier at the onset of the study.

» It should come as no surprise that treatments in such studies tend to appear
harmful.

» However, if health prior to treatment is adequately captured by H, for example
if H = 0 denotes unhealthy and H = 1 denotes healthy, then we might assume
that, conditional on H, whether or not A =1 is random.

> We might have that P(A=1|H =0) = 0.7 and P(A=1|H = 1) = 0.4, but we
can adjust for this in our analysis using the statistical solution to the FPCI.

» The conditional independence at (2) implies the mean independence
E(Y(0)|H) = E(Y(0)|H, A =0), and the consistency assumption implies that
E(Y(0)|H,A=0) = E(Y|H,A =0), and thus we can estimate E(Y(0)|H) with
E(Y|H,A=0).

» Note that the positivity assumption guarantees that in a large enough sample,
there will be individuals in the (H, A = 0) stratum to inform this estimate.

> Similarly, we can estimate E(Y(1)|H) with E(Y|H,A = 1). Therefore we can
contrast the conditional averages E(Y(1)|H) with E(Y(0)|H).
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Circumventing the Fundamental Problem of Causal

Inference

» We have shown how to use the conditional independence assumption at (2) to
estimate conditional causal effects, such as E(Y(1)|H) versus E(Y(0)|H).

> Later, we will explain how to use it to estimate unconditional causal effects,
such as E(Y(1)) versus E(Y(0)), and also a special kind of conditional causal
effect, called the average effect of treatment on the treated (ATT), i.e.
E(Y(1)|[A=1) versus E(Y(0)|A=1).

> Note that if A were a completely randomized treatment as in (1), then the ATT
would equal the overall treatment effect, E(Y(1)) versus E(Y(0)), because A
would be independent of the potential outcomes.

> We will also use the method of differences in differences, the method of
instrumental variables, and the front-door method to estimate the ATT.

» Finally, we note that one can also estimate the effect of treatment on the
untreated using the same methods.
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Effect Measures

» For binary Y, the most common effect measures are the risk difference (RD),
relative risk (RR), and odds ratio (OR).

» Less common but also useful is what we will call the other relative risk, denoted
by RR*, first brought to our attention by J.P. Scanlan.

» These four measures are defined as

RD = p1—po

RR = 2
Po
17

RR* — Po
1-—p1

OR - _P Po
1—p1"1—po

»> In the COVID-19 example, we estimated p; at 0.784 and py at 0.754, therefore

we have
RD = 0.069
RR = 1.002
RR* = 1.390
OR = 1.203
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Measures

These four measures always agree, qualitatively, in terms of the direction of the
change in risk.

In the COVID-19 example, dexamethasone increases the risk of 28-day survival
from 0.754 to 0.784, and so the risk difference is positive, while the other three
measures are greater than one.

The other relative risk, RR*, deserves some explanation. Suppose the relative
risk is greater than one, e.g. dexamethasone increases 28-day survival relative to
withholding it.

Then equivalently, the other relative risk must also be greater than one, e.g.
withholding dexamethasone increases 28-day mortality relative to administering
it.

We can also use the RD, RR, RR*, and OR to measure association between two
binary variables such as Y and T.

We simply let py = E(Y|T =1) and pp = E(Y|T = 0).
When the randomized clinical trial assumption (1) holds, the measures of
association and the measures of causal effect are equal.

When we need to distinguish the causal measures from the association
measures, we will refer to the causal measures as causal RD, causal RR, causal
RR*, and causal OR, whereas RD, RR, RR*, and OR will refer to the
association measures.
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Effect Measures

» Important aside: Whereas the effect measures will always agree qualitatively
within a single population, or stratum (e.g. RD> 0, RR> 1, RR*> 1, OR> 1),
one measure may present a treatment effect as stronger in a certain stratum,
while another measure may present it as weaker in that same stratum.
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Measures

There are other causal effect measures for binary outcomes that are important
to consider, however, they can each be written as a function of just one of the
RD, RR, or RR*.

The number needed to treat (NNT) is

1 1

pr—po  RD’
This measures the number of individuals we need to treat in order to benefit one.

Suppose we treat a sample of size N. Then Npj is the number who we would
expect to survive 28 days.

Had we not treated that same sample, then we would expect only Npg to
survive 28 days.

The number needed to treat is the value for N that makes the difference
Np1 — Npg equal to one, i.e. NNT(p1 — po) =1, or NNT =1/(p1 — po).

We estimate that we would need to treat 1/0.069 = 15 COVID-19 patients with
dexamethasone in order to benefit one.

Note that even though 1/0.069 = 14.49, we did not round down to 14, because
then NNT would be slightly less than one.
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Measures

Three other causal effect measures that we will consider require us to assume
that treatment cannot harm anyone; that is, there is no one of causal type
‘harmed’.
The attributable fraction among the exposed, which we will simply call the
attributable fraction (AF), and which is also called the probability of necessity
(PN), is

(pr—po)/P1=1-1/RR.
Suppose we treat a sample of size N, then, once again, Np; is the number we
would expect to survive 28 days.

Further, Np; — Npg is the number of those for whom treatment was necessary
for survival.

Therefore, the fraction of those who were treated and survived whose survival
we could attribute to treatment (i.e. for whom treatment was necessary), is

N(p1 — po)/Np1 = (p1 — po)/p1-

The probability of necessity is the conditional probability that treatment was
necessary for suvival given treatment was administered and the individual
survived.

For the COVID-19 data, PN = 0.084.
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Effect Measures

» The causal power (CP), also called the probability of sufficiency (PS), is
(p1 = po)/(1— po) =1—1/RR*.

> Suppose we withhold treatment from a sample of size N; then, N(1 — pg) is the
number we would expect to die within 28 days.

> Further, N(1 — pp) — N(1 — p1) is the number of those we would expect to have
survived for 28 days had we treated them.

P> Therefore, the fraction of those who were not treated and died within 28 days
for whom treatment would have had the power to cause 28-day survival (i.e. for
whom treatment would have been sufficient), is

N(1 —po) = N(L—p1)  p1—po

N(1 — po) 1—po’

» The probability of sufficiency is the conditional probability that treatment would
have been sufficient for survival given treatment was withheld and the individual
died.

» For the COVID-19 data, PS = 0.280.
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Effect Measures

> Finally, the probability of necessity and sufficiency (PNS) is
P1— po = RD.

> We note that if we treat a sample of size N, then we expect N(p1 — pp) to need
treatment for survival, and N(1 — pg) — N(1 — p1) = N(p1 — po) is also the
number for whom we would expect treatment is sufficient for preventing death.

> Therefore N(p1 — po)/N is the unconditional probability that treatment is both
necessary and sufficient for survival (e.g. it is the proportion of ‘responsive’
individuals).

» For the COVID-19 data, PNS = 0.069.
» We note that PNS will always be less than both PN and PS.
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Measures

The effect measures we have introduced to measure unconditional causal effects
can also measure conditional causal effects; just repurpose p; and pp to denote
conditional probabilities, such as E(Y(1)|H = h) and E(Y(0)|H = h).
Parametric regression models are useful for estimating both unconditional and
conditional causal effects.

Indeed, the linear model has a natural correspondence with the risk difference,
whereas the loglinear and logistic models have natural correspondences with the
relative risk and odds ratio, respectively.

For unconditional causal effects, suppose the randomized clinical trial
assumption (1) holds so that E(Y|T = 1) = E(Y(1)) and
E(Y|T =0) = E(Y(0)).
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Effect Measures

» The models are

Linear E(Y|T)=p81+ 5T
Loglinear log(E(Y|T)) = p1+ BT
Logistic logit(E(Y|T)) =1+ BT (4)

» For the linear model, 3> = E(Y|T =1) — E(Y|T =0) = RD.

» For the loglinear model, 3> = log(E(Y|T = 1)) — log(E(Y|T = 0)) = log(RR),
so that exp(82) = RR.
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Effect Measures

> For the logistic model, 8> = logit(E(Y|T = 1)) — logit(E(Y|T = 0)), and
logit(p) = log(o) where p is a risk and o is the odds p/(1 — p) corresponding to
that risk.

» Therefore,

E(Y|T =1) E(Y|T =0)

Po=loe T T =1 BT E(viT =) &R

because
log(o1) — log(oo) = log(o1/00),

where 01 and oy are two odds.

42/72



Effect Measures

> For conditional effect measures under assumption (2) with adjusting for
H = (Hi1, Ha, H3, Hs) and A replaced by T,

» the models are

Linear E(Y|T)=p1+4+ 52T+ B3H1+ -+ BeHa
Loglinear  log(E(Y|T)) =p1+ BT+ B3H1 + -+ BeHa
Logistic logit(E(Y|T)) = B1+ BT + B3H1 + - -- + BoHa (5)
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Effect Measures

» Because these are conditional measures, we need to specify values for
Hi,...,Hy.

> Some researchers set these equal to their averages, E(Hi),. .., E(Hs), estimated
from the data. However, for binary variables, this is awkward.

> We could, for example, set them all equal to one. Letting H = (H1, H2, H3, Ha),
we denote H = (1,1,1,1) simply as H = 1.
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Effect Measures

» Again, for the linear model,
B=E(Y|T=1H=1)—-E(Y|T =0,H=1)=RD.
» For the loglinear model,
Ba =log(E(Y|T =1,H=1)) — log(E(Y|T =0,H = 1)) = log(RR),

so that exp(32) = RR.
» For the logistic model,

B2 = logit(E(Y|T =1,H = 1)) — logit(E(Y|T =0, H = 1)),
so that

E(Y|T=1,H=1) E(Y|T =0,H=1)
= — 1 = log(OR
br=le e yT oL =D BT EvTooH=1)  °8OR)

and exp(B2) = OR.

» These conditional effect measures provide one way to adjust for confounding by
H, but in the next module we will use standardization, which yields an adjusted
version of the unconditional effect measures.
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Directed Acyclic Graphs: Theory

» Causal directed acyclic graphs provide a convenient and efficient way to
represent statistical and causal dependence among a collection of variables.

> We rely heavily on Pearl (1995) for our overview.

> Given the collection Xi, ..., Xp, repeated application of the multiplication rule
allows us to write their joint distribution as

P(X1,...,Xp) = I'IJ‘.’:IP(XJ-|X1,.‘.,Xj,l)7 (6)

where Xjp is the empty set.
» The variables (Xi,...,Xj_1) are termed the predecessors of X;.

» Suppose P(X;|X1,...,Xj—1) = P(Xj|pa;), where pa; are a select group of the
predecessors of X;, termed the parents of X;, and suppose also that pa; is the
minimal such set.

»> For Xi, let paj be the empty set.

> Then we can write the joint distribution (6) as
P(X1,. ... Xp) = M_ P(X;|pay). )

> Notice that (7) encodes conditional independences not specified by (6). We can
draw a directed acyclic graph (DAG) that also encodes these conditional
independences.
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> To do so, start with earlier variables and draw an arrow from X, to X; (h < j)
unless X; I Xp| pa;.
>

P(X1, X2, X3, Xa) = P(Xa| X2, X1)P(X3|X2) P(X2| X1)P(X1) (8)
corresponds to the DAG of Figure 2.

X4

'\Xz

X,

Figure 2: Example of a Directed Acyclic Graph
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We have constructed a graph encoding the conditional independences that are
obvious from (8), which are X3 IT X3| X2, X1 and X3 II X1|Xo.

A useful theorem states that we can use the DAG to determine independences
implied by the obvious ones that are not themselves obvious from (8).
For our example, we also have that X3 IT X3| X2 and X3 II X1| Xz, Xa.

These additional independences are difficult to determine directly from the
factorization (8).

One needs to apply a lot of algebraic manipulation. That is why the theorem
allowing us to determine the conditional independences from the graphs is
useful.
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» To prepare us for the theorem, we need to learn d-separation.

» Consider 3 disjoint sets of variables A, B, and C, represented as nodes on a
DAG.

> A path is a sequence of consecutive edges (of any directionality) in the graph.

» A path is said to be d-separated, or blocked, by a set of variables C if and only
if the path (i) contains a chain as in Figure 3a, such that the middle variable Z
isin C, or a fork as in Figure 3b, such that the middle variable Z is in C, or (ii)
contains an inverted fork, or collider, as in Figure 3c such that the middle
variable Z is not in C and such that no descendant of a collider is in C (i.e. in
3d, Z cannot be in C, and neither can be W.)

» Then the set C is said to d-separate A from B if and only if C blocks every path
from a variable in A to a variable in B.
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(a) Chain: Z is an (b) Fork: Z is a Common
Intermediate Variable Cause
X, w X,
|
X, z X, z

(d) Descendant of a
(c) Collider: Z is a Collider: Z is an Effect of a
Common Effect Common Effect

Figure 3: Graphical Structures
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» Based on this definition of d-separation, the useful theorem can be stated as

follows.
Theorem: If A and B are d-separated by C in a DAG, then A1l B|C.

Conversely, if A and B are not d-separated by C in the DAG, then A and
B are dependent conditional on C unless the dependences represented by
the arrows exactly cancel.

»  The requirement that the dependences represented by the arrows do not exactly
cancel is known as faithfulness.

» For help in applying this theorem, we will review the four basic graphical
structures shown in Figure 3 and the independences implied by each.
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vVvyVvyy

In Figure 3a, Z is an intermediate variable.

The only independence implied by this structure is X; 11 X»|Z.
It is NOT true that Xy IT Xo.
In the context of the What-If? study, suppose Xj indicates being randomized to

treatment with naltrexone, Z indicates reducing drinking, and X, indicates
subsequent health.

It is reasonable to assume that naltrexone does not directly cause subsequent
health, but indirectly can cause it via reduced drinking.

Thus if our investigation is restricted to people who have reduced their drinking
and have Z = 1, there would no longer be an association between having taken
naltrexone and subsequent health; therefore, Xi II X2|Z = 1, and similarly for
Z=0.

Because naltrexone can cause subsequent health indirectly, we have Xi1X>.
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vvyYyy

v

In Figure 3b, Z is a common cause.

The only independence implied by this structure is X; I X»|Z.

It is NOT true that Xy IT Xo.

Suppose Z indicates healthy behaviors, which can cause adherence to HIV
medication X; = 1 as well as healthy diet Xo = 1.

Supposing we know someone has adherence to HIV medication, we would
predict he or she had healthy behaviors, and therefore we would also predict
healthy diet; thus, Xy IX>.

However, suppose we look only at people with healthy behaviors Z = 1; then we
would expect everyone to be adherent to HIV medication and have a healthy
diet.

With X; and X, constant, there is no statistical association; that is, knowledge
of adherence to HIV medication does not effect prediction of healthy diet,
because we know that everyone has a healthy diet.

Therefore, X1 I1 Xo|Z = 1.

Analogously, for Z = 0, we would expect everyone to fail to adhere to their
medication and not have a healthy diet, so that X; IT X»|Z = 0.
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vvyyvyy

In Figure 3¢, Z is a common effect.

The only independence implied by this structure is Xj IT X>.
It is NOT true that X; II Xz|Z.

Suppose X indicates a selective university and X indicates admitting
proportionally more men, and Z indicates a high average math SAT score of
enrollees.

Knowing a university is selective does not give us information on whether or not
it admits proportionally more men, so that Xj II Xs.

However, If we look only at universities with high average math SAT scores,
knowing that the university is not selective would induce us to predict that it
admits proportionally more men, so that X, Xz|Z.
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In Figure 3d, Z is an effect of a common effect.

The independences implied by this structure are Xj II Xz, Z IT X;|W, and
Z 1 Xo|W.

It is NOT true that X; IT Xo|W or that X; II Xz|Z.
This is the trickiest of the four types of structures.

Now let Xj indiciate a selective university, X5 indicate admitting proportionally
more men, W indicate high average math SAT score of enrollees, and Z
indicate high average math GRE score of graduates.

X1 11 X, for the same reasons as in the previous example, but XyHX;|Z because
knowing the school has high average math GRE scores of graduates induces us
to predict it has high math SAT scores of enrollees, and therefore X7 and X are
associated again given Z for the same reasons as in the previous example.
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Theory: Practice Applying the Theorem

Figure 4: Causal DAG With Collider
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Theory: Practice Applying the Theorem

» To practice applying the theorem, consider the DAG of Figure 4. Some of the
independences that the DAG implies are

A 11 Y

A 1T W;

A II Y |W;

A I Wi3|Y

A I Y | W, W
A 1T Y | Wi, W5
W, I Ws

W I Y

Wi I Y |A

W, I Y | W.
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Theory: Practice Applying the Theorem

» Some of the dependences that the DAG implies, assuming faithfulness, are

A T W

A T W,

A X Y | W
AT Y | W
AT W | Wa, W,
wi B W,

Wi B W,

Wy B Wi | W,

Wi B Wi | Wo, W,
Ww; U Y.
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Theory: Practice Applying the Theorem

» One might wonder if the DAG of Figure 4 could correspond to any real example.

» Indeed, it is quite difficult to come up with real examples in which the missing
arrows are plausible.

» Consider the following attempt to characterize a randomized trial in a
population of post-menopausal women having difficulty sleeping.

» Let W4 be randomization to a certain sedative, which sometimes causes
headache disorder, A, but can induce more than 6 hours of sleep per night, W>.

» Let W3 be randomization to HRT supplementation, which can also aid in sleep
(Wa) due to reduction of hot flashes, but carries a risk of increased blood
pressure, Y.

» Finally, let W; indicate increased productivity at work.

» One might wonder if the headache disorder A and the increased blood pressure
Y are related; the DAG says they are not.

»  The difficulty with this example, as with many others, in satifying the
assumptions of the DAG, is that sleeping less than 6 hours per night might
induce a headache disorder, and a headache disorder might reduce productivity
at work, and less sleep as well as unproductive work days might increase blood
pressure.

» It is often too hard to justify the missing arrows.
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» The previous theorem is most useful because it implies another theorem which
helps us to identify causal effects by identifying a sufficient set of confounders.

> Specifically,
Backdoor Theorem: Given a DAG containing two variables A and Y as well
as a set of variables C excluding A and Y that does not contain descendants
of A nor Y, the set C is sufficient to adjust for confounding of the effect
of A on Y if and only if there exists no unblocked backdoor path from A
to Y. That is,
{Y(a)}oca LLAIC,

where {Y(a)} is the set of potential outcomes to all possible values a € A
of A
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Again considering our example DAG of Figure 4, the empty set (that is, no
variables in C) is sufficient to adjust for confounding of the effect of Aon Y,
but so is the set W or the set (Wi, Wa) or (W5, Wy).

It is noteworthy that the variable W, is insufficient by itself to adjust for
confounding of the effect of A on Y.

This insufficiency proves that a traditional definition of confounder as a variable
that is associated with A and Y is inadequate, because W, is such a variable
and because the DAG implies that adjusting for it is worse than not adjusting
for any variables.

Adjusting for W5 or Wy without also adjusting for Wj or W3 can cause a bias
referred to as collider bias.
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Referring back to our definition of true confounder, i.e. a variable that
influences the exposure and that also influences the outcome via a directed path
that does not include the exposure, we see that W, does not satisfy the criteria,
as it influences neither A nor Y.

In fact, none of the variables in the DAG of Figure 4 satisfies the criteria, and
therefore, there is no true confounder and hence no confounding of the effect of
AonY.

We learn from this example that a sufficient set of confounders need not contain
a true confounder.

However, if there is no true confounder in a DAG, then the empty set is a
sufficient set of confounders.

As mentioned previously, in some cases not all of the true confounders are

required to form a sufficient set of true confounders, which is simply a sufficient
set of confounders that are all true confounders.
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Examples

» We conclude with the causal DAG used to generate data for the Double
What-If? Study, introduced previously.

> Several questions could be answered using data from the study.

» For example, one might ask what is the intent-to-treat effect of naltrexone
(T =1) on end of study viral load (VL1)?

P The intent-to-treat effect, discussed at more length later, simply compares the
outcome across the two randomized groups, T = 1 and T = 0, without concern
whether participants assigned to naltrexone actually took naltrexone.

» The causal DAG shows that naltrexone was randomized, as there are no arrows
into T.

» Therefore, we do not need to worry about confounding of the effect of T on
VL.

> However, if we were interested in the effect of reducing drinking (A =1) on
VL, we need to worry about the true confounder U, which has an arrow into A
and a directed path from U to VL; mediated by ADy.
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>

The Backdoor Theorem tells us that ADy is sufficient to adjust for confounding
of the effect of A on VLj; letting VL1(0) and VL;(1) be the potential outcomes
to A=0 and A =1, the Backdoor Theorem tells us that

{VL1(0), VL1(1)} II A|ADy.

The Backdoor Theorem also tells us that VL is insufficient to adjust for that
confounding; that is, {VL1(0), VL1 (1) }AA| VL.

Soon, we will learn how to use standardization to adjust for the effect of A on
VL;.
Later, we will compare standardization to a difference-in-differences approach to

adjust for confounding, which makes use of VL rather than ADy, and is valid
under a different assumption.

We introduce three simple difference-in-difference approaches to adjusting for
confounding, and the one that is valid for the Double What-If? Study relies on
the assumption that

E(VL1(0)|A = 1) — E(VL1(0)|A = 0) = E(VLo|A = 1) — E(VLo|A = 0),

called additive equiconfounding.

Thus, the Backdoor Theorem gives us one way to adjust for confounding, but
there are other ways to consider as well.

Yet another method uses T as an instrumental variable to adjust for
confounding of the effect of A on VLj.
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Causal DAGs versus Associational D

» In the preceding slides we have been implicitly assuming that the Double
What-If simulation and the DAGs under discussion were causal.
» However, they could just as equally be associational.

» To illustrate this, we consider the simplest DAG with confounding of the effect
of Aon Y by H and illustrate how placement of the potential outcomes
(Y(0), Y(1)) on the graph can toggle it from causal to associational.
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Causal DAGs versus Associational DAGs

Figure 5: Associational or Causal DAG?
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Causal DAGs versus Associational DAGs

U=(Y(0),Y(1))

I

H

/

A Y

Figure 6: The Previous DAG was Indeed Causal
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Causal DAGs versus Associational DAGs

U=(Y(0),Y(1))

I

H

/

A Y

Figure 7: The Previous DAG had to have been Associational
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Conclusions

» Although a correct causal DAG is very useful for mapping out an appropriate
statistical analysis plan, correctly constructing a causal DAG for a scientific
study is generally quite difficult.

» In most cases, the causal DAG is likely to be misspecified.

» For example, in Figure 4, an arrow from W, or Wy to A or Y would change the
confounding structure drammatically.

» Rather than having no confounding, there would be a true confounder and we
would need to adjust our analysis.

» Supposing the arrow were from Wj to Y, then Wi would be a true confounder
and also sufficient for confounding adjustment.

> Supposing the arrow were from Wy to A, then W3 would be a true confounder
and also sufficient for confounding adjustment.

» Supposing arrows both from W, to A and from W, to Y, then
(Wi, Wa, W3, Wy) would be a true confounder and also sufficient for
confounding adjustment.

» It may be the case that causal DAGs are more useful for destructive purposes
than constructive purposes.

» Given a putative causal DAG and corresponding statistical analysis plan, a
reviewer can argue that missing arrows should instead be present, or that other
variables need to be inserted into the DAG.

» The reviewer's DAG will often show the original statistical analysis plan to be
biased.

» However, even if the impact is to induce caution rather than to offer validation,
causal DAGs can play an important role in causal inference.
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Hill 1965

» Due to all of the assumptions required for proper causal inference, some
common-sense guidelines are also important to bear in mind. In 1965, the
statistician and epidemiologist Sir Austin Bradford Hill provided nine criteria to
assist in making causal judgements from observational data.

» Our observations reveal an association between two variables, perfectly clear-cut
and beyond what we would care to attribute to the play of chance. What
aspects of that association should we especially consider before deciding that
the most likely interpretation of it is causation?

> (1) Strength. First upon my list | would put the strength of the association.

> (2) Consistency: Next on my list of features to be specially considered | would
place the consistency of the observed association. Has it been repeatedly
observed by different persons, in different places, circumstances and times?
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Hill 1965...

> (3) Specificity: One reason, needless to say, is the specificity of the association,
the third characteristic which invariably we must consider.

> (4) Temporality: My fourth characteristic is the temporal relationship of the
association —which is the cart and which the horse?

> (5) Biological gradient: Fifthly, if the association is one which can reveal a
biological gradient, or dose-response curve, then we should look most carefully
for such evidence.

> (6) Plausibility: It will be helpful if the causation we suspect is biologically
plausible. But this is a feature | am convinced we cannot demand. What is
biologically plausible depends upon the biological knowledge of the day.

» (7) Coherence: On the other hand the cause-and-effect interpretation of our
data should not seriously conflict with the generally known facts of the natural
history and biology of the disease - in the expression of the Advisory Committee
to the Surgeon-General it should have coherence.
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Hill 1965...

> (8) Experiment: Occasionally it is possible to appeal to experimental, or
semi-experimental, evidence. For example, because of an observed association
some preventive action is taken. Does it in fact prevent?

> (9) Analogy: In some circumstances it would be fair to judge by analogy. With
the effects of thalidomide and rubella before us we would surely be ready to
accept slighter but similar evidence with another drug or another viral disease in
pregnancy
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